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Abstract

In this laboratory work we will study the vortex lattice VL of a
type II superconductor using Small Angle Neutron Scattering SANS.
The sample is a single crystal of Nb, a superconductor with a Tc = 9.3
K and lower and upper critical fields of µ0Hc1 = 0.18T and µ0Hc2 =
0.4T, respectively. For external magnetic fields between Hc1 and Hc2

the superconductor is in the so-called intermediate state. There, the
magnetic field partially penetrates the material in the form of individ-
ual flux lines, forming a regular lattice, the ”vortex lattice” VL. This
lattice can be directly probed using small angle neutron scattering
SANS techniques. In this experiment we will study the behaviour of
the VL as a function of the magnetic field.

1 Introduction

1.1 Superconductivity

A superconductor is a material that (i) conducts electrical current with no
resistance (”perfect conductivity”) and (ii) expels magnetic fields from its
interior (”Meissner effect”). Superconductivity was first discovered in Hg
by the Dutch physicist Heike Kamerlingh Onnes in 1911 in Leiden. In the
superconducting state no heat, sound or any other form of energy would
be released from the material below the ”critical temperature” Tc, i.e., the
temperature at which the material becomes superconducting. The transi-
tion normal-superconducting is abrupt, a phase transition. See Figure 1.1.
However, for most materials this occurs only at extremely low temperatures.

There are two classes of superconductor, type-I and type-II, based on their
behaviour under an applied magnetic field. Figure 1.2 shows the ideal bulk
magnetisation curves for both types, and the intrinsically different behaviour.
In type-I superconductors the magnetisation curve is characterised by the full
Meissner effect. This means an almost complete expulsion of internal fields
from the bulk of the superconductor, barring a surface depth of characteristic
dimension λL, the London penetration depth. As B = µ0(M+H), and B = 0
inside the bulk, the magnetisation follows M = −H. On increasing the field
above a critical value Hc, the system undergoes a first-order transition into
the normal state.
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FIGURE 2.2: Type-II Superconductors in External Magnetic Fields. a), Schematic of the
magnetic phase diagram of type-II superconductors with the perfect diamagnetic Meissner state for
Hext < Hc1(T ). Magnetic flux lines (vortices) partially penetrate the superconductor in the mixed state
for Hc1(T ) < Hext < Hc2(T ). b), The normalised superfluid density ns(r) is completely suppressed at the
centre of each vortex (r = 0) with a characteristic normal core radius x, the coherence length. The size
of the vortex is characterised by the London penetration depth lL, where the internal field distribution
H(r) is enhanced. Modified from [16].

expelled from the bulk of the superconductor, which is known as the Meissner-Ochsenfeld
effect [31].

However, an external magnetic field can partially penetrate a class of superconducting
materials, so-called type-II superconductor, but only in form of quantised magnetic fluxes
F0 = h/2e. h = 6.626 · 10�34 Js is the Plank constant and e = 1.602 · 10�19 C is the elec-
tronic charge [21]. Figure 2.2a shows a schematic magnetic phase diagram of a type-II super-
conductor. For applied fields Hext below the lower critical field Hc1, a perfectly diamagnetic
Meissner state is found (blue shading). For higher magnetic fields Hc1(T ) < Hext, but still be-
low the upper critical field Hc2(T ), magnetic flux quanta penetrate the superconductor in form
of quasi-one-dimensional flux lines (orange shading). This state is named mixed.

There is a different class of type-I superconductors that do not display a mixed state: for
larger applied magnetic field than the thermodynamic critical field, e.g., µ0Hc = 10.5 mT for
aluminium [32], the material becomes normal directly from the Meissner phase.

Superconducting vortices, have a normal core with a diameter x, which is in the order of
the coherence length of the Cooper pairs and screening currents flowing like vortices. The
magnetic flux in the core region is shielded from the superconducting condensate between the
vortices by orbital supercurrents. Figure 2.2b depicts the of the superfluid density ns(r) in

Figure 1: Phase transition normal - superconducting state and (right) Meiss-
ner and mixed states of a type II superconductor
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Introduction and theory

The clearest distinction between the two classes of superconductor, type-I and

type-II, is seen on observing their behaviour under an applied magnetic field. Fig-

ure 1.1 shows the ideal bulk magnetisation curves for both types, and the intrinsi-

cally different behaviour. In type-I superconductors the magnetisation curve is char-

acterised by the Meissner effect. This describes the almost complete expulsion of

internal fields from the bulk of the superconductor, barring a surface depth of char-

acteristic dimension λL, which is the London penetration depth. As B = µ0(M + H),

and B = 0 inside the bulk, the magnetisation follows M = −H for all fields less

than the thermodynamic critical field, Hc. On increasing the field beyond Hc, the

ideal system undergoes a first-order transition into the normal state, as there is a

finite latent heat. In the absence of an external field, there is no latent heat, and

so on increasing the temperature, the transition to the normal state is second-order.
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Figure 1.1: The ideal bulk magnetisation versus applied field curves for (a) a type-I
superconductor and (b) a type-II superconductor.
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Figure 2: Classes of Superconductors. Below a critical field Hc the Meissner
effect is complete in a type I superconductor. In a type II above a critical
field the field penetrate in the form of individual lines.

1.2 The Vortex Lattice

Magnetic flux can penetrate a type II superconductor in the form of Abrikosov
vortices (also called flux lines) each carrying a quantum of magnetic flux
φ0 = h/(2e) = 2.068 × 10−15 T· m2. These tiny vortices of super current
tend to arrange themselves in a triangular flux line lattice VL also called
vortex lattice VL, and which is perturbed by material inhomogeneities that
pin the flux lines. Many properties of the VL are well described by the phe-
nomenological Ginzburg-Landau theory or by the electromagnetic London
theory, which treats the vortex cores as singularities. In Nb the VL is rather
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”soft”. Thermal fluctuations and random pining oppose to the (ordering)
vortex-vortex interaction and may result in a ”melting” the VL.

The flux lines in a superconductor are quasi one-dimensional objects:
they align along the direction of the magnetic field and are arranged parallel
to each other and forming a triangular lattice in a plane perpendicular to
the external field. Flux quantisation dictates that the minimum distance d
between lines of flux lines is given by

d =

√
σφ0

H
, (1)

where H is the applied field, φ0 is the flux quantum and σ is a dimensional
constant that depends on the VL structure. σ = 1 for a square lattice, and
σ =
√

3/2 for an hexagonal lattice.

Table 1: Distance between nearest neighbours planes of flux lines in a VL in
Nb

H in T d in Å
0.2 946
0.3 772
0.4 669

2 Neutron Scattering

The most prominent scattering techniques in material research use photons,
electrons or neutrons. Owing to the different properties of the scattered par-
ticle, regarding charge, spin, mass and energy, one often selects a combination
of the complementary scattering techniques to obtain a complete view on the
investigated problem.

The neutron was discovered in 1932 and four years laters it was found
that it can Bragg diffracted by solids. The properties of the neutron are very
suitable for condensed matter research: it is electrically neutral and has a
spin S = 1/2. Neutrons are Fermions and obey Fermi-Dirac statistics. Being
uncharged allows neutrons to easily penetrate the bulk of the investigated
material and also the experimental equipment, e.g., cryostats, magnets or
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pressure cells. This advantage has also a downside: the weak interaction
between the neutrons and the nuclei of the scatterer material leads to a
low occurrence of scattering events. Therefore, high incident neutron fluxes
and long counting times are unavoidable, for example compared to x-ray
scattering.

Table 2: Physical Properties of the neutron

mass mn 1.674110−27 Kg
charge 0
spin 1/2
magnetic dipole moment µ −1.913µN
free neutron life time τ 881.5 s
de Broglie wavelength λ h

mnv

kinetic energy E mnv2

2
= mn

2
(h
λ
)2

Neutrons are produced by fission in nuclear reactors or spallation at
accelerator-based sources and then moderated to the required energy. They
are then directed to the instruments in neutron guides, using total reflections
from ”supermirrors” (a neutron supermirror consists of typically 100 highly
reflective double layers of Ni/Ti ). The energy of neutrons with a wave-length
in the order of interatomic distances matches very well the typical energies of
lattice and spin excitations in solids. Therefore, neutron scattering is partic-
ularly suitable for investigations of dynamic processes in condensed matter.
The second characteristic of the neutron, namely its spin, permits to couple
directly the magnetic moments of the bulk material and infer the static as
well as dynamic microscopic magnetic properties, such as magnetic structures
or excitations.

2.1 Neutron Sources

The neutrons used in scattering experiments can be obtained from a nu-
clear reactor, like the high flux reactors at Oak Ridge National Laboratory
ORNL (http://www.ornl.gov/) at Oak Ridge Tennessee and at the Institute
Laue-Langevin ILL (http://www.ill.eu/) in Grenoble , The reactor FRMII in
Garching near Munich (Germany) or in Saclay near Paris (France). Here the
neutrons are produced by spontaneous fusion of 235U. There are also spalla-
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Table 3: Wavelength, frequency, velocity, and energy relationship for neu-
trons

Quantity Relationship Value at 2 meV

Energy [meV] = 2.072k2[Å−1] 2 meV
Wavelength λ[Å] = 9.044√

(E[meV ])
6.4 [Å]

Wave vector k[Å−1] = 2π

λ[Å]
0.982 Å−1

Frequency ν[THz] = 0.2418E[meV ] 0.484 THz
Wavenumber ν[cm−1] = ν[Hz]/(2.9981010cm/s) 16.1 cm−1

Velocity v[Km/s] = 0.632k[ Å−1] 0.62 Km/s
Temperature T [K] = 11.605E[meV ] 23.2 K

tion sources like SINQ at PSI , where neutrons are produced by bombarding
heavy nuclei (like U, W, Ta, Pb or Hg) with high-energy protons.

Thermal neutrons with a Maxwellian energy spectrum around 320 K (λ ∼
1.7 Å) and, cooled with moderators at temperatures in the range from 20 K
to 40 K are used to generate neutrons with a Maxwellian spectrum around
λ ∼ 6 Å. Research reactors work in the same way as nuclear power stations
but are designed to yield a high neutron flux leaving the moderator system.

Neutron spallation sources use a beam of accelerated protons to bring the
nuclei in a target to an excited state, such that neutrons ‘evaporate ’from the
target. These neutrons are moderated in the same way as in a reactor to ob-
tain a thermal or cold spectrum of neutrons for scattering experiments. Most
spallation sources are pulsed sources, delivering intense pulses of neutron ra-
diation. The Swiss spallation source, SINQ, at Paul Scherrer Institute is an
exception from this. Other spallation sources are ISIS near Oxford, UK, or
the Spallation Neutron Source, Oakridge National Laboratory, USA. A new
European spallation source is being built in Lund, Sweden. It will become
operational in 2018 and will be the new European high intensity neutron
source.
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2.2 Reciprocal space and scattering diagram

The laws of momentum and energy conservation governing all diffraction and
scatternig experiments are:

Q = kf − ki,

|Q| = k2
i + k2

f − 2|ki||kf |cos(θs),
h̄ω = Ei − Ef

In these equations, the wave vector magnitude is k = 2π/λ, where λ is
the neutron wavelength and the momentum transfer to the crystal is h̄Q.
The subscript i refers to the incident beam and f to the diffracted or final
beam. The angle between the incident and final beams is 2θs and the energy
transferred to the sample is h̄ω. Because of the final mass of the neutron its
dispersion relation is

E =
h̄2k2

2mn

E[meV ] = 2.072k2[Å−1]

h̄ω =
h̄2k2

2mn

(ki2 − k2f )

In any scattering experiment one measures the incident (i) and and final
(f) neutron beams and infers the energy and momentum transferred to the
sample. Elastic scattering occurs for ki = kf . But to understand the process
it is necessary to consider the reciprocal lattice of the solid. The dots in the
next figure represent the reciprocal lattice for a two-dimensional crystalline
solid and each point corresponds to a reciprocal lattice vector. We plot a
circle with radius k with centre at the origin of the reciprocal lattice and if
it passes through two points of the reciprocal lattice the Bragg condition is
satisfied. The circle is called the Ewald circle in two dimensions and Ewald
sphere in three dimensions.

In the case of neutron diffraction on a VL, as before, we construct the
Ewald sphere (grey) with the incoming wave vector k parallel to the external
magnetic field orientation. The two dimensional reciprocal flux line lattice
(VL) appearing in the plane perpendicular to the field is represented as blue
spots. In this configuration the sphere touches the reciprocal lattice at only
one point. Therefore, the quasi momentum conservation is not satisfied for
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Figure 3: Neutron diffraction diagram using Ewald sphere construction.

a) b)

Figure 7: a) Ewald sphere (grey) with the incoming wave vector ~k parallel to the external magnetic
field orientation. The two dimensional reciprocal flux line lattice (FFL) appearing in the plane
perpendicular to the field is represented as blue spots. In this configuration the quasi momentum
conservation (Eq. 10) is not satisfied. b) By rotating the reciprocal lattice by an angle of !, such

that Eq. 10 is satisfied a Bragg spot is registered in the detector. The angle between ~k and ~k0 is
given by 2✓, which is of the order of 1� (Taken from [47]).

logical molecules, polymers, nanocrystaline materials as well as of surface properties
of catalysts and colloidal suspensions. SANS can be used in metal physics in order
to study phase stability of alloys, precipitates, interfaces or grain boundaries; or in
material science for examining structural tailoring and testing stability under load
[42, 43, 44, 45]. SANS can also be used to study magnetic properties of systems with
long spin correlations [42], to investigate skyrminon lattices in magnetic insulators [46]
or to study vortex lattices in type-II superconductors. In our case small-angle neutron
scattering is used for the latter.

3.5.1 Vortex Lattice Investigation using SANS

In the mixed state of a type-II superconductor a vortex lattice appears whose flux
lines from a regular lattice in the plane perpendicular to the applied magnetic field
(see chapter ??). The spacing between the FLL planes is proportional to d /

p
�0/B,

which is usually of the order of several 100 Å at µ0H = 1 T (Eq. 5, Fig. 3). Scattering a
neutron beam on the FLL, magnetic Bragg spots are observable if the Bragg condition
(Eq. 8 and 10) is satisfied (see Fig. 7). This is because the magnetic dipole moment
produced by the neutron’s spin interacts with the magnetic potential generated by the
flux lines. If for instance �= 5 Å and d = 200 Å is inserted into Eq. 8, a scattering angle
of 2✓ = 1.4� is obtained. This means, to resolve the di↵raction pattern from a sample,
long detector to sample distances have to be considered. Using SANS di↵ractometers
such as SANS-I at PSI, a detector to sample distance range from 1 to 20 m is available
[42]. Since the interatomic lattice spacing in crystals is of the order of 1 Å, magnetic
and nuclear Bragg spots do not overlap.
We now discuss the partial di↵erential cross-section, in order to understand the physi-
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Figure 4: Ewald Sphere for neutron diffraction of a VL at two at two rocking
angles

diffraction to any other point. No Bragg peaks are observed in the detector.
b) One rotates the reciprocal lattice by an angle of ω, such that the Ewald
sphere touches two points of the reciprocal lattice, then the momentum con-
servation is satisfied and a Bragg spot is registered in the detector. The angle
between k and k’ is given by 2θ, which is of the order of 1 degree. Actually
the detector is fixed in space and we rotate the sample and magnet by a small
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angle, i.e., we scan for Bragg spots by rocking scans. We detect scattering
at angles less than 3 degrees and, therefore, the denotation of small angle
scattering. This cannot be detected with a conventional neutron diffraction
spectrometers that usually detect angles larger than 10 degrees.

2.3 Scattering from the vortex lattice

Neutrons interact with with the flux lines via the dipole potential of the
neutron magnetic moment within a magnetic field B (r). The scattering
potential can be given by

V = −γµNB(r) (2)

where γ = 1.91, a dimensionless constant, µN is the nuclear magneton and
B (r) is the field distribution of the VL. For parallel fields everywhere B =
(0, 0, B), as is expected for the ideal VL, the elastic differential cross-section
for magnetic scattering becomes

dσ

dΩ
=

(
mn

2πh̄2

)2

γ2µ2
N |
∫
B(r)exp(iq · r)dr|2S(q) (3)

Above qh,k is a vector in the reciprocal lattice. The final result for the
integrated Bragg intensity I(qh,k) of a Bragg spot of order h, k can be written
as:

I(qh,k) = 2πV φn

(γ
4

)2 λ2n
φ2
0qh,kcos(ζ)

|F (qh,k)|2 (4)

where φn is the neutron flux per unit area, V is the illuminated volume of
the sample, λn is the neutron wavelength and cos(ζ) is the Lorentz-factor.
The angle ζ is that which lies between the reciprocal lattice vector and the
direction normal to the rotation axis. F (qh,k) is the VL form factor, defined
as the two- dimensional Fourier transform of the field-distribution for the VL
unit cell.

2.4 A rocking-curve measurement

As in any diffraction experiment, the key information obtained from SANS
measurements on the VL is obtained by carrying out rocking curve measure-
ments. For the SANS measurements reported in this thesis, this involves
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rotating a reciprocal lattice vector through the Bragg condition at the de-
tector, and recording the diffracted intensity as a function of rotation angle.
To do this involves careful alignment of the sample with respect to the field
and neutron beam, and then rotation of the reciprocal lattice.

To perform a rocking curve measurement, the experimenter chooses a
series of angles about which to rotate the reciprocal lattice and measure
the diffracted intensity, which typically has the expected Bragg angle at the
midpoint. Ideally the angular range should take into account the anticipated
angular width of the rocking curve as might be expected from resolution
considerations, and be wide enough so that at the widest scanned angles the
observed intensity falls to the background level.

In SANS experiments, there are two complementary activities that are
carried out on recording the rocking curve of a Bragg spot. The first is to
perform background measurements with no VL established in the sample
(above Tc(H), or after zero-field cooling). These are then subtracted from
foreground measurements where the VL is present, leaving just the diffracted
signal from the VL.

From the magnetic field dependence of of the form factor of the VL one
can extract the superconducting parameters: the London penetration depth
λL and and the Ginzburg coherence length ψ using a London model that
takes into account the finite size of the vortex cores. From the magnetic
form factor one may obtain superconducting properties of Nb, λL and ψ as
follows:

F (qh,k) =
Be−0.44q2ψ2

1 + q2h,kλ
2
L

(5)

Here B is the applied magnetic field (actually magnetic induction) and qh,k
is the field dependent reciprocal lattice vector.

3 SANS Spectrometer

A classical SANS instrument has a pinhole geometry, as shown in Fig. 1.
A poly-chromatic, ‘white’neutron beam is guided to the instrument from
the neutron source, and a monochromatic beam is generated by selecting
a narrow range of wavelengths with a mechanical neutron velocity selector.
Typically, the FWHM of the wavelength distribution of the monochromatic
beam is 10% of its peak position. The beam is then collimated using pin-
holes placed in the collimation section of the instrument before the beam
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hits the sample. Scattered neutrons are counted with an area sensitive de-
tector located at some variable distance from the sample. Usually, the flight
path from sample to detector has the same length as the collimation section,
as this configuration gives the optimal compromise for beam intensity and
resolution. A typical SANS detector is a 3He detector with an area ∼ 1 m2

and 128 × 128 pixels. The spatial resolution of the detector allows to deter-
mine the scattering angle 2θ of the counted neutrons and the corresponding
momentum transfer q = (4π/λ) · sin(2θ/2). The SANS setup outlined above
is typical for continuous neutron sources. Modern SANS instruments offer
different sample environments for experiments under tailored conditions with
e.g., controlled temperature, applied pressure, electric or magnetic fields, or
controlled humidity. Small-angle neutron scattering by the flux line lattice

Figure 2.3: A schematic diagram of a typical SANS instrument. Typically the length
of the collimator section is approximately equal to the distance between the sample
and the area multidetector, in the traditional pinhole geometry. This distance can
be up to ∼40 m on the D11 instrument at ILL. Typically shorter distances are used,
especially for larger momentum transfers.

∼ 1 MeV) down to cold (∼ 1 meV) energies. For both types of source, cold neutrons

are directed towards the instrument via guides which are internally coated with

a highly polished ‘supermirror’ layer (Ni-coated multi-layer). This inner surface is

reflective to grazing incidence neutrons, as the critical angle is a few degrees for

cold neutrons. Therefore, neutrons are guided towards the instrument via multiple

critical angle reflections.

The neutrons that emerge from the ends of the guides possess a range of en-

ergies. In order to select a single energy, and hence wavelength, a helical tilt slot

mechanical velocity selector is used. The velocity selector is composed of a turbine

that rotates about its long axis. Neutron absorbing blades that are approximately

parallel to the long axis exist on the outside, but are helically rotated about the

axis of the turbine. This means that the centre point between two adjacent blades

is not parallel to the turbine axis between the entrance and exit of two blades. By

rotating the turbine at a certain frequency, only neutrons of a certain energy will be

able to pass through between the blades, whilst higher and lower energy neutrons

will become absorbed. In reality, the selector allows a distribution of wavelengths

to pass with a typical FWHM spread ∆λn/λn of ∼ 10 %.

Selected neutrons then pass through a low-efficiency detector which acts as the

41

Figure 5: A schematic diagram of a typical SANS instrument. Typically
the length of the collimator section is approximately equal to the distance
between the sample and the area multidetector, in the traditional pinhole
geometry. This distance can be up to 18 m on the SANS-I instrument.
Shorter distances are used, especially for larger momentum transfers.

4 Data Reduction and Analysis

In order to analyze the signal of the VL, the data measured in the supercon-
ducting phase (foreground) were subtracted from the high temperature phase
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data (background) for sets at identical conditions of the spectrometer, such
as incident neutron wavelengths λn, collimation, detector distance, slits and
the same rocking angles. In order to obtain reproducible results, the data
were normalized per standard monitor. After every change of wavelength,
the beamstop in front of the detector was adjusted to protect the detector
from damages caused by the intense direct beam.

!!

!!

Appendix A - Experimental Details

Figure A.1: Image capture of the front-end of the GRASP software (version 5.09).
SANS data over multiple rocking curves is loaded, showing all the first-order Bragg
spots in a single image. A sector box is defined on the detector over area occupied
by the upper right Bragg spot.

Figure A.2: Image capture of a rocking curve plot output by the GRASP software,
and fit with a suitable lineshape function. The horizontal axis is in units of degrees
of rotation angle of the reciprocal lattice about the vertical axis, where zero corre-
sponds to the straight through position. The vertical axis is in units of total counts
within the sector box per standard monitor.
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Figure 6: Images of the windows of Grasp. Left main panel where data
is loaded for manipulation. Right Image capture of the rocking curve plot
output by Grasp and a fit with a suitable line shape functionn

The data manipulation and basic data analysis can be carried out using
the GRASP software developed by C.D. Dewhurst at the ILL 18. The soft-
ware is developed within a Matlab environment, and as such it can handle
the two-dimensional and pixelated multidetector data recorded by the SANS
instrument. The user interface includes a window that allows a view of the
distribution of the diffracted intensity across the multidetector at a certain
rotation angle of the reciprocal lattice. It is also possible to sum the mea-
surements at many rotation angles together into just one image, providing
a picture of the diffracted intensity over an entire rocking curve. By simi-
larly summing over multiple rocking curves, it is possible to deduce the VL
coordination by showing all of the first-order Bragg spots in just one image.

To perform various data manipulations one uses the front panel of Grasp.
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One may, for instance, add SANS foreground data summed over numerous
rocking curves. The corresponding background data can also be properly
subtracted and they are properly normalized. Statistical noise that occurs
close to the beam stop can be easily masked. Below we show and Image
capture of the front-end of the GRASP software (left). SANS data over
multiple rocking curves is loaded, showing all the first-order Bragg spots in
a single image. A sector box is defined on the detector over area occupied
by the upper right Bragg spot. At the right we show an image capture of a
rocking curve plot output by the GRASP software, and fit with a suitable
lineshape function. The horizontal axis is in units of degrees of rotation angle
of the reciprocal lattice about the vertical axis, where zero corresponds to
the straight through position. The vertical axis is in units of total counts
within the sector box per standard monitor.

5 Experimental Procedure

1. Before the experiment, estimate the vectors (q1,0 and q0,1) of the recip-
rocal lattice of Nb (hexagonal lattice) for various applied fields, between
0.2 and 0.4T

2. For the same fields determine the scattering angles 2θ between the
incident and final neutron beam for a neutron beam of incident energy
of 4 - 5 meV.

3. You will be given a Nb single crystalline sample. Measure its dimen-
sions and mass. The sample will be surrounded by Cd that will deter-
mine its area to be illuminated. Cd is a good neutron absorber and in
this experiment no neutrons will go through the Cd plate.

4. Mount the Nb sample in a sample holder, insert it into the cryo-magnet
(MA11) and start cooling the system.

5. Using the neutron camera verify that the sample is in position (i.e., at
the centre of the neutron beam).

6. Adjust the beam stop, intended to block the direct beam to protect the
detector.

12



7. Three different measurements are required for each configuration of the
instrument: (a) empty beam or transmission. One has here an attenu-
ated beam and remove the beam stop. This will provide a measure for
the neutron flux. (b) background and (c) foreground measurements as
described below.

8. Cool the system to 10 K, above Tc, where you will perform ”rock-
ing scans” as background measurements (measurements in the normal
state.

In a rocking scan one changes stepwise the direction of the magnet
with respect to the incident beam. This change results in an optimi-
sation of a Bragg peak (i.e. maximum intensity) for a certain ”rocking
angle”

9. Apply fields between 0.18 and 0.4T and at each field cool down the
sample to the lowest temperature, 1.8 K.

10. Perform foreground measurements (the same scans as in the back-
ground measurements, but in the superconducting state).

11. Using Grasp make sets of foreground - background signals. Sum all
the data (with the background subtracted) and measure the opening
angles between the Bragg spots.

12. Using Grasp make plots of intensity vs. rocking angle. Determine the
position and width of the Bragg peaks.

13. At home: from the above data calculate the form factor as a function
of applied field.

14. At home (optional): Fit the form factor data to the London model
corrected for the finite neutron cores, as explained above and extract
the London penetration depth of Nb and the Ginzburg coherence length
at the lowest temperature.

More information of the instrument is available in our Web page
http://www.psi.ch/sinq/sansi/sans-i
The description of the program running the experiment, SICS, is described
at
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http://www.psi.ch/sinq/sansi/manuals.
The description of the program running the sample environment (tempera-
ture, fields) Sea
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