0

contributors

simulations Emanouela Rantsiou **Tobias Panzner** Panos Korelis Uwe Filges PSI infrastructure Vincent Thominet Sibylle Spielmann Roman Bürge Marcel Schild Dieter Graf Jan Krebs

Serments Serments Ursula Bengaard Hansen Wolfgang Kreuzpaintner Birgit Wiedemann Harald Schmidt Erwin Hüger Sina Mayr

Björgvin Hjörvarsson Marité Cardenas Beate Klösgen Rob Dalgliesh Frédéric Ott Phil Bentley Bob Cubitt Peter Böni Uwe Stuhr

. . .

2

Selene guide • optics reflectometry • experiments • full guides

4

definition of focusing

focusing optics

reshapes the phase space of a n-beam (an ensemble of neutrons)

to a small spatial extent at a given position

reshapes the phase space by restricting it in space (slit)

5

reflective focusing optics

elliptic

divergent to convergent

parabolic

parallel to convergent

hyperbolic

convergent to convergent

6

reflective focusing optics

elliptic

divergent to convergent

ntensity larb

Single Multiple

uluuluuluuluuluul

7

reflective focusing optics

elliptic divergent to convergent

- early reflections suffer the most from coma aberration
- \Rightarrow multiple reflections
- \Rightarrow non-convergent beam behind guide exit

L. Cusssen et al.: NIM A 705, 121 (2013)

reflective focusing optics

9

reflective focusing optics

coma aberration

coma aberration

... and its correction

coma aberration

... and its correction

chromatic aberration

due to λ -dependend reflectivity of coating

 \rightarrow 4 reflections

 $mpprox 8rac{\Delta heta/ ext{deg}}{\lambda_{ ext{min}}/ ext{\AA}}$

point-to-point focusing

with

2 subsequent elliptical reflectors

for

horizontal and vertical direction

Selene picture ceiling painting in the Ny Carlsberg Glyptotek, København

demonstrator

- total length = 4 m
- divergence $\approx 1.8^{\circ} \times 1.8^{\circ}$
- max spot size $\approx 2 \times 2 \,\text{mm}^2$
- wavelength \geq 4 Å

properties of a Selene guide

imaging system

luminous-field diaphragm

decoupling of spot-size and divergence

divergence aperture

optics

transmission filter using a logarithmic spiral

for convergent or divergent beams with small focus spot

e.g. as analyser for any beam reflected on small or moderate-sized samples!

polariser, frame-overlap mirror

polarisation efficiency measured with a Fe/Si supermirror

Selene guide

astigmatic focusing

optics

astigmatic focusing

astigmatic focusing using a hyperbolic deflector

astigmatic focusing

in combination with TOF and

a chopper / scanning aperture / dispersive monochromator

specular intensity concentrated on a small spot

 \Rightarrow focusing GISANS configuration

condenser using a parabolic deflector to generate a parallel beam

parabola axis \Rightarrow beam direction

focal length \Rightarrow beam width

beam width & divergence \Rightarrow divergence

no collimator needed

tunable

adaptive parabola (convex) focal spot with $170 \,\mu\text{m}$ reached

(PSI, early version)

spectral analysis using a multilayer monochromator

J. Stahn | ISIS, 11. 2015 | Selene guide | 26

specular reflectometry

specular reflectometry

angle-dispersive θ_{1}^{0}

J. Stahn | ISIS, 11.2015 | Selene guide | 28

specular reflectometry

J. Stahn | ISIS, 11.2015 | Selene guide | 29

specular reflectometry

specular reflectometry

angle-dispersive

λ - θ -encoding

ML monochromator continous sources

scanning aperture

adaption to R(q) and $I(\lambda)$ pulsed sources

high-intensity mode

no off-specular signal pulsed sources

demonstrator on Amor @PSI

Li transport through thin silicon films

in-situ study in cooperation with E. Hüger, F. Strauß and H. Schmidt, TU Clausthal

technological motivation:

- Si layers can be used in Li batteries to prevent oxidation of the electrodes
- Si films can be used as elecrodes in Li batteries
- \Rightarrow How fast does Li difuse through thin amorphos Si films?
- \Rightarrow What is the solubility of Li in Si?
- \Rightarrow What is the influence of the Si:O:Li interface layer?

E. Hüger, et al., Nano Letters 13 (2013) 1237.

Li transport | the sample

multilayer structure using the different densities of ⁶Li and ⁷Li

Li transport | experimental set-up in-situ furnace

- $\circ \ \mathcal{T} \in [25^\circ ext{C}, 500^\circ ext{C}]$
- $\circ~\dot{\mathcal{T}}=50\,\mathrm{Ks}^{-1}$ for heating
- $\circ~\dot{\mathcal{T}} = 12\,\text{Ks}^{-1}$ for cooling
- time-structure
- ∘ interval

(measurements at RT in between annealing periods)

continous measurement

Li transport | measurements

 $^{6}\text{LiNbO}_{3}/\text{Si}/^{7}\text{LiNbO}_{3}/\text{Si}$ multilayer counting time 1.5 min $\log_{10} I(\lambda,\theta)$

Li transport | measurements & data reduction

Li transport | measurements & data reduction

Li transport | reflectivity curves

recent measurements on a ${}^{6}Li_{3}NbO_{4}/Si/{}^{7}Li_{3}NbO_{4}/Si$ multilayer

anealing at $T = 240^{\circ}C$

ml is chemically stable Li contrast is vanishing

quasi in-situ reflectmetry during sample growth sample: Si/Cu(50 nm)/Fe(0...20 layers)

by B. Wiedemann, S. Mayr, W. Kreuzpaintner, TU Munich

counting time per spin state = 10 min

further projects

small multiferroic samples with electrical contacts

in-operando studies on electrochemical cells

very nice data

top secret until published ...

full guide projects

J. Stahn | ISIS, 11. 2015 | Selene guide | 43

λ

Estia: a reflectometer for the **ESS**

- horizontal scattering plane
- sample size $< 10 \times 50 \, \text{mm}^2$
- divergence $1.5^{\circ} \times 1.5^{\circ}$
- $\lambda \in [4, 10]$ Å

• principle operation modes: classical, optimised, high-intensity

Estia: a reflectometer for the **ESS**

guide lay-out

44

full guide projects	J. Stahn ISIS, 11. 2015 Selene guide 45	

Estia: a reflectometer for the **ESS**

guide lay-out

side view

full guide projects

Amor: replacement of beam guide

full guide projects

J. Stahn | ISIS, 11. 2015 | Selene guide | 47

Werner Schweika's thermal & cold guide

two individually optimised Selene guides with

a common focal point on the sample

and

a focal point on a thermal / cold moderator

