

Jochen Stahn Laboratory for Neutron Scattering

Estia focusing reflectometer lay-out beam extraction shielding and optics

ESS workshop on neutron optics and shielding 03., 04. 09. 2014, Lund, Sweden

Estia

focusing reflectometer

main science case:

determination of structural and magnetic depth-profiles near the surface

typical samples:

thin coatings on $1\times1\,\text{mm}^2$ to $10\times50\,\text{mm}^2$ substrates

geometry:

angle of incidence $\theta=0.1^{\circ}\dots 20^{\circ}$

 \Rightarrow samle *height* = 2 µm ... 10 mm

Selene guide

point-to-point focusing

with

2 subsequent elliptical reflectors

for

horizontal and vertical direction

virtual source

Estia — new lay-out

shielding

ideal trajectory

shielding

finite moderator (30 mm) finite virtual source (20 mm)

shielding

direct line-of-sight to moderator / target environment

shielding

apertures and beam-stops

virtual source

Selene guide

total length: 24 m

accuracy: wavyness $< 10^{-5}\,\text{rad}$ position $\approx 1\,\mu\text{m}$

⇒ precise alignment
easy realignment
thermalisation (RT)

open construction allows for new alignment concepts:

conventional

open guide

40

analyser-

optics — polariser

optics — scanning aperture

located behind the guide

states:

- $\frac{\text{absent / open}}{\Rightarrow \text{high-intensity mode}}$
- in place, stationary
 - \Rightarrow conventional mode

scanning

 $\Rightarrow \lambda - \theta \text{ encoding}$ periode 70 ms span 60 mm reset-time 15 ms

optics — scanning aperture

operation modes:

shift in between pulses (see Freia)

linear scan during each pulse large Δq_Z

linear scan during each pulse small Δq_z

fancy stuff adapt q_z to $I(\lambda, \theta)$ and $R(q_z)$

optics — scanning aperture

needs to be developed!

max. speed: $6 \,\mathrm{ms}^{-1}$

max. path length: 60 mm

example:

praline-picking robots running 24/7

chopper — frame-overlap

fo-filter for higher harmonics in combination with polariser