Jochen Stahn

Laboratory for Neutron Scattering

Paul Scherrer Institut

Reflectometer(s) for the ESS suggestions by the Danish-Swiss working group

workshop on WP 2 Lund, 29.04.2011

outline

selene approach: focusing in the scattering plane

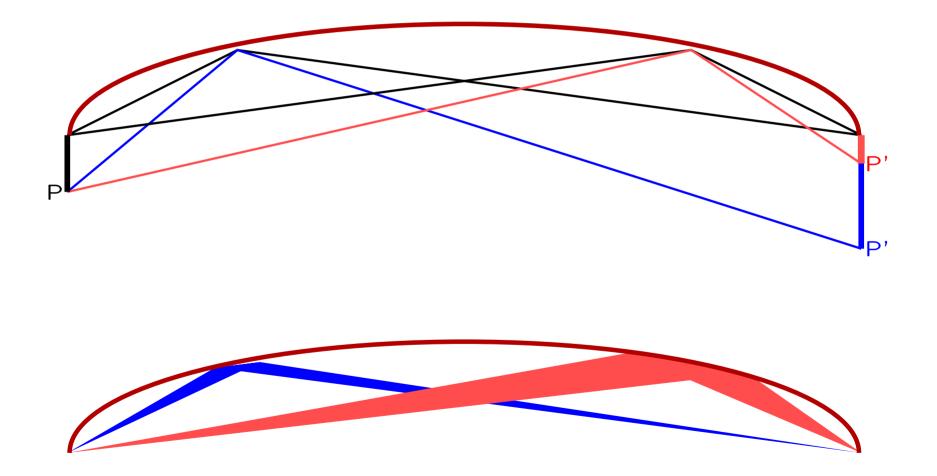
concept

- principle lay-out of a full instrument
- tests on Amor
- to be done for ESS

soft matter

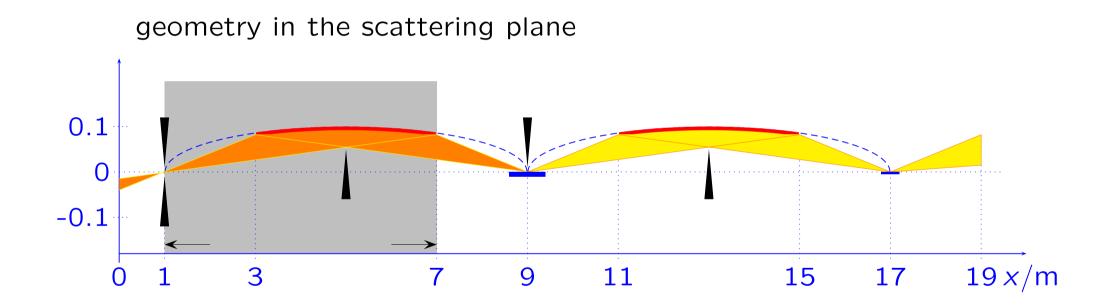
medium resolution, horizontal sample plane

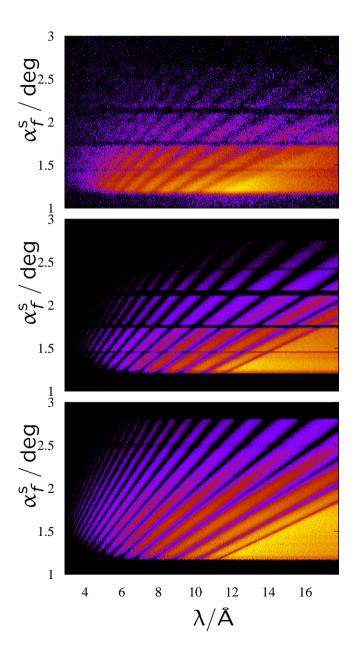
 \Rightarrow short instrument, moderate focusing in the sample plane

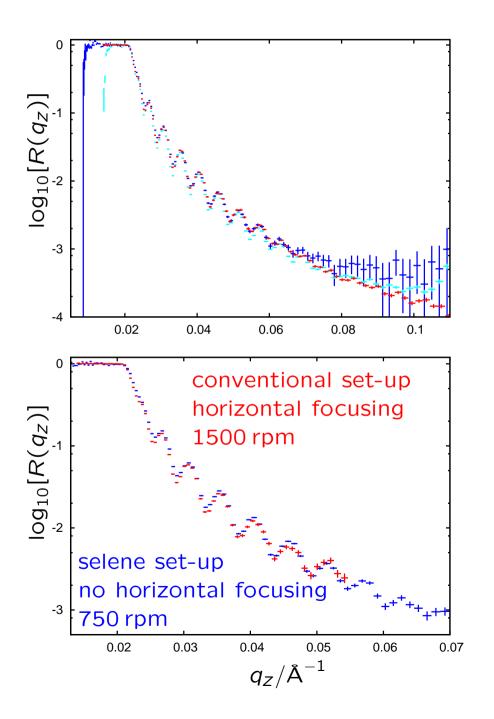

(GISANS: strong focusing to the detector)

small samples

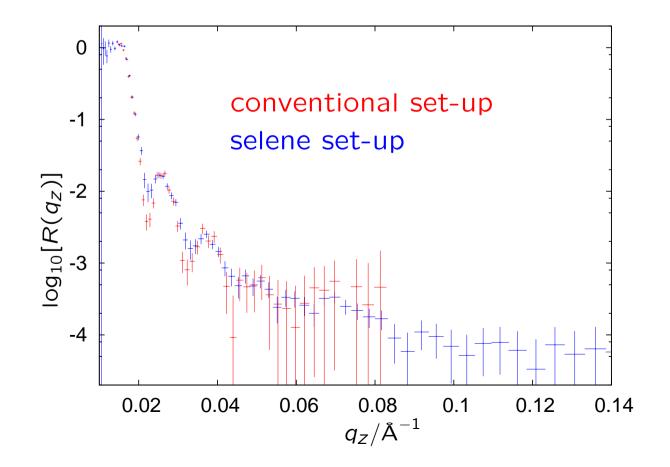
magnetic layers, variable resolution, vertical sample plane


 \Rightarrow moderate length, strong focusing in the sample plane


selene — full instrument


(Amor prototype scaled by 2)

selene — tests on Amor


sample: 1000 Å Ni on glass

selene — tests on Amor

sample: $La_{2/3}Sr_{1/3}MnO_3/SrTiO_3$ - multilayer on NGO sample-size: $4 \times 4 \text{ mm}^2$ no focusing in sample plane measurement time: 1 h chopper frequency: 750 rpm / 1500 rpm

- 1 simulation of an instrument with 2 guide elements
 - + check of options like polarisation, band-width filter, chopper
- 2 construction of the prototype instrument and tests on BOA
 - + experiments with *real* samples
 - + horizontal and vertical geometry
- 3 adaption of the design to the needs of the ESS splitting into
 - a horizontal soft matter instrument, and
 - a vertical hard condensed matter instrument for small samples
- \Rightarrow deliverables:
 - report on tests on BOA
 - complete simulation of the instruments for the ESS

- optimised for liquid/air interface
- \Rightarrow horizontal sample plane, large q_z -range with one setting
- optimised for short counting times
- \Rightarrow no use of long wavelengths
- \Rightarrow conflict short vs. long instrument!

GISANS focusing to the detector in the sample plane compatibility with selene-concept has to be checked! (astigmatic focusing might spoil the correction for coma aberration) aim for small samples ($< 10 \times 10 \text{ mm}^2$)

- \Rightarrow strong focusing to the sample in the sample plane
- \Rightarrow initial aperture of 1 \times 10 mm² ideally!

variable resolution (1 to 20% required):

- ⇒ variable sample-detector distance (to tune $\Delta \alpha$) moderate source/detector distance (30 to 50 m)
- or use a multilayer monochromator to get an angle/wavelength encoding for high resolution

(no chopper, Frédéric's REFocus approach)

- TOF gives off-specular resolution
- ML gives specular resolution

(to be evaluated)

manpower and costs

task programming	2.1, 2.2	pm	k€
 off-specular scattering (from guide/sample) gravity in elliptic guides 	<i>∠.</i> ⊥, <i>∠</i> .∠	3 6	22 44
simulations – full set-up on BOA (several options) – analysis of experiments (real effects) – adaption for ESS, soft matter – adaption for ESS, hard matter	2.3, 2.4 2.3, 2.4 2.1 2.2	5 9/12	36
hard-ware, investment	2.4		
 second guide element diaphragms, rotation and translation stages 			50 50
consumables – computation time – misc. for BOA experiment			10 10
conception / experiments – full set-up on BOA	2.3, 2.4	6+9	160