

Jochen Stahn Laboratory for Neutron Scattering and Imaging

Erice School Neutron Science and Instrumentation, IV course

Neutron Precession Techniques

Erice, Sicily, Italy, 01.-08.07.2017

Solid State Polarisers and Focussing Neutron Optics

basics

- reflectometry
- supermirrors
- \circ polarising coatings

polarisers

- \circ overview
- reflective coatings
- comparison

focusing optics

- \circ refractive
- \circ reflective

basics

- reflectometry
- supermirrors
- \circ polarising coatings

polarisers

- overview
- \circ reflective coatings
- comparison

focusing optics

- refractive
- reflective

analogy to visible light

flat surfaces partly reflect light

 \rightarrow image of the boot

some media also transmit light

 \rightarrow ground below the water

reflectivity of a surface

function of index of refraction n

analogy to visible light

flat surfaces partly reflect light

 \rightarrow image of the boot

some media also transmit light

 \rightarrow ground below the water

parallel interfaces cause interference \rightarrow colourful soap bubbles

reflectivity of plane parallel interfaces

simulated reflectivity of a **surface**

simulated reflectivity of a thin layer

simulated reflectivity of a thick layer

simulated reflectivity of a **periodic stack of layers** = multilayer, ml

simulated reflectivity of a stack of mls

reflectometry

simulated reflectivity of a **stack with thickness gradient** = supermirror, sm

reflectometry

simulated reflectivity of a **sm** and of **Ni**

index of refraction

$$n := \frac{|k_i|}{|k_0|}$$
$$\approx 1 - \frac{V}{2E_{kin}}$$
$$V = \frac{2\pi\hbar^2}{m_n}\rho^b - \underbrace{\mu_n \mathbf{B}}_{\pm \mu_n B}$$
$$:= \frac{2\pi\hbar^2}{m_n} \left(\rho^b \pm \rho^m\right)$$

reflectometry

polarising sm

polarising sm coatings

FM	spacer	substrate	pro	con
Fe ₈₉ Co ₁₁	Si	Si		Co
Fe	Si : N		high transmission low activation	$q_{c}^{ - angle}$
FeCoV	Ti : N	absorber	$ q_{c}^{ - angle} < 0{ m \AA}^{-1}$	Со
$Fe_{0.5}Co_{0.5}$				Со

Co gets activated \Rightarrow avoid whenever possible!

reflectometry

reflectometry

keep in mind:

$R(q_Z)$	=	R(n(z), B(z))		
	=	1	\forall	$q_Z < q_C$
	=	10.55	for	$q_Z < q_{\rm SM}$
	\propto	q_{Z}^{-4}	\forall	$q_Z \gg q_C$

• typical numbers:

	$ ho^{b}/10^{-6}{ m \AA}^{-2}$	$q_{C}/{ m \AA}^{-1}$	ω _c @4 Å
Si, $Fe^{ -\rangle}$	2.1	0.010	0.18°
$Fe^{\ket{+}}$	13.9	0.026	0.47°
Ni	9.4	0.022	0.40°
Ti	-3.4		

 \Rightarrow small angles \Rightarrow geometrical constraints

 \bullet roughness \Rightarrow off-specular scattering \Rightarrow background & depolarisation

basics

- \circ reflectometry
- supermirrors
- \circ polarising coatings

polarisers

- overview
- \circ reflective coatings
- comparison

focusing optics

- refractive
- \circ reflective

polarisers

overview

transmission through polycristalline Fe 6 mm Fe: P = 33% at $\lambda = 3.6$ Å

18

Heusler alloy crystal monochromator

thin film coatings

Heusler alloy monochromator / analyser

 Cu_2MnAl single crystals

with $F_{\text{magnetic}}(111) = \pm F_{\text{nuclear}}(111)$

 $\Rightarrow F(111) \text{ reflex strong for } \mu_n \uparrow \uparrow \mathbf{B}$ weak for $\mu_n \downarrow \uparrow \mathbf{B}$

- $\lambda \in [0.8, 6.5]$ Å
- $\Delta\lambda/\lambda \approx 1\%$

polarisers

• $P \approx 95\%$

• used for triple-axis spectrometers

P. Courtois et al: N.I.M. A 529, 157 (2004)

polarisers - based on SM

Using Reflected beam

- trajectory is inclined
- high polarisation $P_R \approx 96\% 99\%$

polarisers - based on SM

single, falt mirror

switchable remanent polariser

bender

S-bender

- almost straight trajectory
- garland-problem is solved

application: solid-state S-bender

- Si wafers (150 $\mu m)$ used as channel
- thin and short channels
- $\circ |q_c^{|angle} < 0 \, {
 m \AA}^{-1}$
- no dark regiond due to substratehigher absorption

this principle also applies to benders

24

T. Krist et al.: N.I.M. 698, 94 (2013)

polarisers - based on SM

25

using Transmitted beam

- straight trajectory
- moderate polarisation $P_T \approx 60\% 80\%$

 q_7

using Transmitted beam

- straight trajectory
- high polarisation $P_T \approx 96\% 99\%$

increase of efficiency by multiple transmission:

- both sides of substrates coated
- several substrates in sequence
- \Rightarrow reduced intensity

length

width

 $\dot{-} \approx 300$

transmission bender + collimator

- straight trajectory
- dark areas due to substrates

T. Krist: solid-state transmission bender + collimator

cavity

cavity

V-cavity

• straight beam geometry

F. Mezei et al.: Physica B 180-181, 1005 (1992)

V-cavity

no neutrons!

• straight beam geometry phase space affected

- $\Delta\lambda/\lambda_{min} \approx 5$
- $P \approx 99\%$

F. Mezei et al.: Physica B 180-181, 1005 (1992)

equiangular spiral

for beams $\left\{\begin{array}{c} emerging from \\ focused to \end{array}\right\}$ a narrow area

 \bullet same ω for all trajectories

ightarrow flexibility for ω , m, λ

• phase space hardly affected

prototype at PSI

 $\mathbf{0}$

X_{max}

J. Stahn, A. Glavic: Journal of Physics: Conference Series 862, 012007 (2017)

 $x_{\rm min}$

using Reflected and Transmitted beam

• split neutron guide for 2 polarised instruments (at HMI / HZB)

F. Mezei et al.: Physica B 213-214, 393 (1995)

suggested analyser for Estia@ESS

A. Glavic

wide-angle analysers

stack of cavities / benders / spirals pointing towards the sample

challanges:

 avoid / minimise black angles provide a high magnetisation field reduce losses

solid state polarisers

J. Stahn

polarisers - based on SM

wide-angle analysers

study for MIEZE@ESS

 $\lambda > 6 \text{ Å}$

by P. Böni

 $\lambda \in [6, 48] \text{ Å}$

basics

- \circ reflectometry
- supermirrors
- \circ polarising coatings

polarisers

- overview
- \circ reflective coatings
- comparison

focusing optics

- \circ refractive
- \circ reflective

focusing optics

motivation

higher flux on small samples

no illumination of sample environment

control over phase space / trajectories

selection of area on / within sample

deal with small sources

remote footprint control

focusing optics

reshapes the phase space of a n-beam (an ensemble of neutrons)

to a small spatial extent at a given position

reshapes the phase space by restricting it in space (slit)

focusing optics

focusing optics vs. shading optics

high costs (needs high precision) lower transmission convenient beam manipulation *real* focusing aberration

robust flexible high transmission high background

refractive optics

 $n \approx 0.99999...1$ for all bulk materials

Snell's law: $n = \frac{\sin \alpha_{ex}}{\sin \alpha_{in}}$

 $\Rightarrow \alpha_{in} \approx n \, \alpha_{ex}$ close to normal incidence

• used for SANS

M. R. Eskildsen et al. nature 391, 563 (1998)

reflective optics

elliptic

hyperbolic

convergent to convergent

reflective focusing optics

elliptic

divergent to convergent

reflective focusing optics

elliptic divergent to convergent ?

early reflections suffer the most from coma aberration

multiple reflections
intensive (and the second s

L. Cusssen et al.: NIM A 705, 121 (2013)

reflective focusing optics

47

reflective focusing optics

coma aberration

coma aberration

... and its correction

coma aberration

... and its correction

• $I(\theta)$ is not!

focusing optics – reflective

Selene guide

point-to-point focusing

with

2 subsequent elliptical reflectors

ceiling painting in the Ny Carlsberg Glyptotek, København

52

Selene guide

decoupling of

• spot-size

and

• divergence

condenser: parabolic deflector to generate a parallel beam

parabola axis \Rightarrow beam direction

focal length \Rightarrow beam width

beam width & divergence & spot size

no collimator needed

tunable

adaptive parabola (convex) focal spot with $170\,\mu\text{m}$ reached

(PSI, early version)

54

astigmatic focusing: focusing to the detector by shifting the focal point

focusing optics – reflective

solid-state neutron lense

focusing optics - discussion

focusing results in ...

... no gain in brilliance

...a defined footprint ...a clean beam

homogeneous

uni-modal angular or spatial distribution

non-perfect optics

 \Rightarrow reduction of resolution / transmission

works best for small samples

weak aberration

Thomas Krist	HZB
Peter Böni	TUM
Uwe Filges	PSI
Artur Glavic	PSI

for discussions and for contributing to these slides

PNCMI 2016 proceedings: Journal of Physics – Conference Series 862 (2017)

the future (or past)

J. Stahn | solid state polarisers Erice, 07. 2017

58

sonic screwdriver used by the Doctor to

reverse the polarity of the neutron flow

There must be a similar device to polarise it!