Magnetic Flux Distribution in High $\mathit{T}_{\!c}$ SC / FM Multilayers

____ Motivation ____

Low-Energy μSR , magnetisation and ellypsometry measurements on multilayers of high $T_{\rm c}$ superconducters and ferromagnets showed an unexpected magnetic behaviour below $T_{\rm c}$ [1,2]:

The depth-resolution of these methods (if any) is not sufficient to allocate the increased magnetic flux to certain regions.

Neutron Reflectometry _____

Unpolarised neutron-reflectometry was applied to 2 samples with varying temperature and magnetic field strength ${\it H}.$

Instrument: TOPSI (Morpheus) with $\lambda = 4.74 \text{ Å}$

___ Samples _

The samples are multilayers consisting of the high ${\cal T}_c$ superconductor $YBa_2Cu_3O_{6.93}$ (YBCO) and the GMR ferromagnet $La_{1/3}Ca_{2/3}MnO_3$ (LCMO) on SrTiO_3. The samples were grown by LASER ablation by H.-U. Habermeier at the MPI Stuttgart.

TEM picture of a YBCO/LCMO multilayer

____ Interpretation __

increase of the 1st Bragg peak:

 \rightarrow increased contrast between YBCO and LCMO due to the magnetisation of LCMO below $\mathcal{T}_{\text{Curie}}$

appearance of the 2nd Bragg peak:

- (which is symmetry forbidden for a thickness ratio 1:1)
 - \rightarrow the magnetic field profile does no longer match the chemical composition
 - ? penetration of **B** some 10 Å into YBCO

decay of the intensity for T < 20 K for $[\text{YBCO}(140 \text{ Å}) / \text{LCMO}(70 \text{ Å})]_7$:

? a "magnetic roughness" of the order of 50 Å appears

To clarify the open points and to reconstruct the profile $B_{\rm z}$ more measurements are necessary with

- \rightarrow better peak-to-background ratio (ADAM@ILL),
- \rightarrow measurements close to the critical angle (AMOR),
- \rightarrow polarised neutrons.

References, Acknowledgements ____

C. Bernhard *et al.*, PSI Scientific Report 2002 III, 84
H-U. Habermeier *et al.*, Physica C 364-365, 298 (2001)

We want to thank the people, who helped with theses experiments: J. Hoppler, J. Chakhalian, C. Bernhard, T. Gutberlet, M. Gupta

contact: jochen.stahn@psi.ch, URL: Morpheus.web.psi.ch