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Resistive or Capacitive Charge-Division Readout for
Position-Sensitive Detectors

Alberto Pullia, Walter F. J. Müller, Ciro Boiano, and Roberto Bassini

Abstract—Two-point charge division is a typical technique
for position measurements in linear multi electrode detectors
(microstrips, multiwire proportional counters, silicon drift-de-
tector arrays, and scintillators coupled to photodetectors). Only
two preamplifiers, located at the right and the left ends of the
detection array, are used, each of which receives a fraction of the
charge produced by the ionizing event. Position is reconstructed
comparing these charge fractions. In principle, either a resistive
or a capacitive divider may be used to split the charge. The choice
between such two different setups is not obvious. In fact, each
of them shows advantages and disadvantages in terms of noise,
signal propagation, and linearity. In this paper, we present a
unified treatment for the capacitive and the resistive mechanisms
of charge division that addresses the issues of this choice. As an
example, the realistic setup of the multiwire position-sensitive
proportional counter to be used in the TP-MUSIC III chamber of
the ALADiN experiment at GSI is considered.

Index Terms—Charge division readout, Position-sensitive detec-
tors, posihon, measurements, .

I. INTRODUCTION

T WO-POINT charge splitting is a measurement technique
aimed at identifying the position of an ionizing event in

linear multi-electrode detectors [microstrips, multiwire propor-
tional counters (MWPC), silicon drift-detector arrays, scintilla-
tors coupled to segmented photodetectors] [1], [2]. Rather than
using an electronic channel per electrode, it makes use of only
two “virtual-earth preamplifiers” with their virtual earths con-
nected to the right and the left ends of the electrode array. Each
preamplifier receives a fraction of the total charge produced by
the event. The relative position of the event along the array
depends on these charge fractions, or

(1)

where is thetotal lengthof thearray, is thechargecollected
at the right end point, is the charge collected at the left-end
point, and the total charge is used as a normalization
factor. Both a resistive and a capacitive divider may be used to
split the charge into fractions and , as is shown in the
examples of Fig. 1. Each of these setups shows advantages and
disadvantages in termsofnoise,signalpropagation,and linearity,
which depend on the constraints dictated by the detection system
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Fig. 1. Charge division in (a) a multiwire proportional counter and (b) a matrix
of photodetectors coupled to a scintillator.

(capacitance and number of electrodes, required processing
time, and necessity of decoupling capacitors). In this paper, a
unified treatment for the capacitive and resistive mechanisms
of the charge division is presented. The signal shape as well as
the obtainable position resolution are derived versus a suitable
pattern of detector–processor parameters. It is found that the
capacitive charge-division yields a higher resolution unless very
short processing times are required. As an example, the physical
parametersof theMWPCof theTP-MUSICIII chamber installed
at GSI are considered. This MWPC consists of a plane of anode
wires (diameter m, 5-mm spacing) shielded from the
detector volume by a Frisch grid located 5 mm away. The Frisch
grid acts as a gate that can be “closed” when necessary, so as to
prevent the slow positive ions produced in the multiplication
volume from back scattering into the detector volume. The
electrons traverse the region between the Frisch grid and the
anodewires in80–100ns.Themaximumtimewidthof thecharge
cloud trespassing the Frisch grid, caused by thermal diffusion or
by inclined trajectories of the primary ionizing particles, ranges
between 20 and 150 ns, which sets a minimum for the processing
time at about 200 ns. The shortest processing time is required in
this application to maximize the resolving time in case of double
or multiple hits in the detector volume.

0018-9499/02$17.00 © 2002 IEEE
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Fig. 2. Two-point measurement by means of (a) resistive divider (the stray
capacitances in parallel to resistorsR are neglected) and (b) capacitive divider.
The resistorsR or capacitancesC connect all detection elements to each other.
Each detection element has a capacitive impedance to ground (capacitances
in dashed line). The current signal delivered by the detector isQg(t), where
Q is the charge, and unit-area functiong(t) models the charge–collection
mechanism. Decoupling capacitancesC are also shown.

Fig. 3. Elementary cells by which the charge-division line may be modeled.
C is the electrode (wire) capacitance. Elementary device for charge division
is (a) a resistorR or (b) a capacitanceC.

An entirely different approach is based on terminating both
ends of the charge-splitting line into the line characteristic
impedance and use propagation times to derive the position.
However, such an approach is beyond the scope of this paper.

II. SIGNAL PROPAGATION AND NONLINEARITIES

An electrical model of the charge-division line is shown in
Fig. 2, where the electrode capacitances are drawn in dashed
line. The signal is modeled as a short current pulse , where

is the collected charge and is a unit-area shape factor de-
pending on the charge–collection mechanism. Decoupling ca-
pacitors are also shown, whereas the high-value resistors
used to bias the detector have been neglected. We want to calcu-
late the current flowing into the virtual earths of the two far-end
amplifiers as a function of the position of firing electrode. To do
this, let us model the network as the cascade of identical sym-
metrical -type cells of the type of those of Fig. 3, connected
as shown in Fig. 4. Impedances terminating the line at both
ends model the decoupling capacitors and the virtual earths. Vir-
tual earths act as electronically cooled damping resistors [1],
typically a few tens of ohms. These low-value resistors can be
neglected in first approximation. is the capacitance of the
electrodes, and or are the charge-splitting devices. is

the characteristic impedance of the cell, or the impedance seen
at the input of a semi-infinite line () of identical cells [3]. Pa-
rameter is the so-called transduction exponent of the cell, de-
fined as the natural logarithm of the input-to-output voltage ratio
of each cell of such a line () [3]. It can be shown that any sym-
metric cell is fully characterized by parametersand . After
some calculations, shown in Appendix I-A and I-B, we derive

(2)

for cells of Fig. 3(a) [first and third row of (2)] and (b) [second
and fourth row of (2)]. is the independent variable in the
Laplace domain. In Fig. 4, and are the impedances seen
at the right/left side of the firing electrode. As is shown in
Appendix I-C

(3)

where . and are the cells located at the right/left
side of the firing electrode. The signal currentis split by cur-
rent divider – and flows thereafter through the line toward
the far-end amplifiers. By using the current divider formula and
(39) of Appendix I-C, it is found that

(4)

where indexes 1 and 2 can be swapped and . If no
coupling capacitor is used, vanishes and (3) and (4) become
much simpler, namely

(5)

(6)

Equations (4) and (6) show in the Laplace domain the
propagation of the current signal from the firing electrode to the
right-end amplifier. Equations (4) and (6) hold namely when
the line is terminated into the amplifier virtual earth through
impedance or a short-circuit connection. Approximating

as a delta-like impulse, becomes the Laplace transform
of function , or . Inverse Laplace
transform of (4) or (6) yields the current flowing into the
amplifier virtual earth, which is clearly a function of , or the
position of the firing electrode.

A. Resistive Divider

For the case of a resistive divider, the first row of (2) holds.
We search the time-domain counterparts of (4) and of (6) with

and . To this purpose, it
is necessary to calculate the roots of the denominator of (4) and
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Fig. 4. Equivalent circuit of a charge-splitting line. Any cell models the charge-division element (a resistor or a capacitor) and the electrode impedance. The line
is terminated into virtual earths of far-end amplifiers through coupling capacitors as modeled by impedancesZ .

(6), or the poles of the network. After some calculations, it turns
out that the denominator of (4) may be rewritten as

(7)

where and . Apparently, this polynomial
is the sum of two polynomials, each withknown real roots,
and it therefore has roots. Furthermore, the roots of the overall
polynomial are distinct and can be easily derived numerically.
Similarly, the denominator of (6) may be rewritten as

(8)

which apparently has distinct real roots. Whenever all
poles are distinct, the inverse Laplace transform can be calcu-
lated using the well-known relationship

(9)

where is inverse Laplace transform, is the th root of
, the prime stands for derivative versus, and is time.

We can use (9) to translate (4) (with ) in the time
domain, being the roots of (7). Similarly, we can switch (6)
in the time domain, obtaining, in this case, exactly

(10)

Equation (10) gives explicitly the current flowing into the
virtual earth of the far-end amplifier when no decoupling ca-
pacitors are used, as a function of the position (dictated by)
of firing electrode. In Figs. 5–7, the integral of , or the
transmitted charge, is shown as normalized to the total collected
charge for realistic values of the parameters. Note the effect
of the decoupling capacitances in Figs. 6 and 7. The waveforms
converge to a common final value of about one-half of the total
collected charge. This is rather intuitive: the collected charge
cannot be eventually transmitted out of the resistor chain due
to the decoupling capacitances that act as a barrier at low fre-
quency. The charge will rather get redistributed on the large-
value decoupling capacitors. This yields on each of the

Fig. 5. Charge signal reaching one far-end amplifier in a proportional counter
with 20 wires. Indexh is the position of the firing wire, in ascending order as
the electrode gets further from the amplifier.R = 1:8 k
, orR = 90 
.
C = 4:5 pF. No decoupling capacitors are used. The waveforms stabilize after
100 ns.

Fig. 6. Same as in Fig. 5 (20 electrodes,R = 90 
. C = 4:5 pF) but with
decoupling capacitors of 2.2 nF. Note the effect of decoupling capacitors; the
waveforms never reach stable values.

decoupling capacitances (assuming them equal to each other). It
is worth pointing out that such a charge will be drained away in
the long term by the high-value resistors used to bias the elec-
trodes. Figs. 6 and 7 show clearly that if decoupling capacitors
are used, linearity will eventually depend on the shaping time
constant. To address this problem sufficiently, large decoupling
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Fig. 7. Same as in Fig. 6, but on an expanded time scale. It can be seen that
the waveforms decay exponentially, converging to a common final level of about
one-half of the total collected chargeQ (waveforms are normalized toQ in the
figure). The time constant is dictated by the overall resistance of the divider and
the series of the two decoupling capacitances, or 1.8 k
 � 1.1 nF= 2 �s.

capacitances are to be used, in such a way that the time constant
of the charge redistribution process, or

(11)

is greater than the used shaping time. Alternatively, a differen-
tiator followed by a baseline restorer could be used to clip the
slow tail caused by the decoupling capacitors.

The principal advantage of a resistive divider is a good lin-
earity of the fraction (1) versus position relationship. In fact, at
low frequency, the electrode capacitancesbehave as open-
circuit connections and linearity is only limited by the accuracy
of the divider resistors. This can be seen in Fig. 5. Aafter100
ns linearly distributed saturation values are reached. From a
mathematical standpoint, this can be seen in (6), where .
If vanishes, which corresponds to pushingto infinity, then

in (2), and (6) converges exactly to . However,
capacitances along with resistors introduce phase shifts
at high frequencies along the signal path, which yield a transient
(noticeable for ns) and propagation delays (noticeable
for ns), which get larger as the firing wire is further
from the amplifier. To minimize such effects, the resistor values
should be chosen relatively low (90in the shown examples).
An empirical rule to determine the maximum transient duration
( ) is

(12)

which also permits us to derive as a function of the transient
duration. As is shown in Appendix II-A, (12) can be seen as
the time constant of the line impedance as approximated at suit-
ably low frequencies with a resistance () and a capacitance

connected in parallel. Resistance is the series
of elementary resistors, capacitance is one-half of
the parallel connection of all electrode capacitances. Factor
one-half arises because a voltagesupplied at one end of the
line degrades to zero approaching the far end of the line and

Fig. 8. Charge division with a capacitive-divider setup for a multiwire
proportional counter. Fraction (1) is reported versus the wire position while
considering 29 wires. Wire capacitance is 0.8 pF. The capacitancesC of the
divider as well asC are of 1.1 nF. The nonlinearity is predicted to be<1%.

therefore the total charge stored on capacitancesis one-half
of . Low-value resistors should be used to make the
transient (12) fast. The price to be paid for low-value resistors
is a large amount of parallel current noise, as described in Sec-
tion III.

B. Capacitive Divider

For the case of a capacitive divider, the second and fourth row
of (2) holds. Note that in this case,is a constant and is the
impedance of a capacitance. Assume again . With these
assumptions, (4) with shows no dependence on,
and in consequence, its time-domain counterpart is a delta-like
function. This is not surprising. The line is a passive circuit made
by capacitances only and thus, has no bandwidth limitation. This
is an advantage against the resistive-divider setup. In fact, the
transmitted charge, or the integral of , is a clean-step func-
tion. However, the dependence of fraction (1) on position is non-
linear. In fact, capacitances sink small amounts of charge
away from the main capacitive divider, which affects the lin-
earity of the divider itself. In Fig. 8, the loss of linearity as de-
rived from (6) is shown for realistic values of the parameters. To
minimize this nonlinearity, relatively large capacitances should
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be used in the divider. An empirical rule for such dimensioning
is

(13)

in which a comparison is made between approximations of the
charge stored onto the series ofcapacitances and that sunk
away by capacitances . The sum of the capacitances shown
in (13) is a good approximation of the total line capacitance as
is shown in Appendix II-B. If (13) is verified, linearity will be
mainly limited by the accuracy of the divider capacitors. Note
that high-voltage capacitors should be used because typically
thousands of volts are provided to bias the electrodes: if an elec-
trode breaks down, a fast-rising charge would be induced on the
nearby capacitances and they could get damaged.

Advantages of a capacitive divider include a fast response and
a low noise, as will be shown in Section III.

III. N OISE OFPOSITION FIGURE

The complex impedance of the charge divider is the input
load of the amplifiers, and it is given by (46) and (48) of Ap-
pendix II-A and II-B, i.e.,

(14)

where from now on , and

( )

( ).
(15)

has the form of a capacitance and a resistor in parallel (re-
sistive divider) or of two capacitances in parallel (capacitive
divider). represents the obvious component of intercon-
necting the virtual earths of the two preamplifiers. The other
component is associated with the electrode capacitances and can
be visualized as a leakage path to ground. The Johnson noise
(bilateral) associated with is

( )

( )
(16)

where denotes the real component of , is
the Boltzmann constant, is absolute temperature, and the
other symbols are obvious. The principal noise sources at the
right-end amplifier input are shown in Fig. 9, where noise
injection from the opposite-end amplifier through pathis
apparent. In the left-end amplifier, and must be replaced
with and and with . The following relations hold for
the series and parallel noises (bilateral):

(17)

Fig. 9. Equivalent circuit of right-end amplifier and shaper useful for noise
calculations. Swap indexes 1 and 2 of noise sources to get the equivalent circuit
of left-end amplifier.

For an FET, , where is its transconductance
and is a constant factor ranging from 0.5 to 1 [4]; and for a
BJT, , where is the base spreading
resistor, is the feedback resistor of the amplifier,is the
electronic charge, and is the leakage current of the input tran-
sistor. In semiconductor detectors, should include an effec-
tive current obtained by summing all electrode’s leakage cur-
rents, each weighted linearly from 0 to 1 as the electrode posi-
tion gets closer to the amplifier. Other nonwhite-noise contribu-
tions [5] have been neglected. and are the input and feed-
back capacitances of the amplifier. Note that the instantaneous
Johnson-noise current (16) entering the right-end amplifier and
that entering the left-end amplifier are anticorrelated. The se-
ries-noise cross talk through path introduces an additional
correlation between the amplifiers’ noises. These noise corre-
lations must be taken into account in deriving the total noise of
the position figure (1). Fig. 10(a) and (b) shows the equivalent
circuits for noise analysis of the right- and the left-end ampli-
fiers, where conventional signs are used for the instantaneous
noise voltages and currents to highlight their correlations. Ap-
pendix III shows how these equivalent circuits are derived.
is the Laplace transform of the impulse response of the
amplifier-shaper chain normalized to its maximum value. Note
that with such a normalization a current, fed into the am-
plifier’s virtual earth causes a signal at the shaper output with
height .

Noise of position figure (1) in a bandwidth fromto
is given by the error propagation law or by

(18)

where the star stands for complex conjugate, and

(19)

Equations (18), (1), and (19) yield

(20)
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Fig. 10. Equivalent circuits of (a) right-end and (b) left-end amplifiers and
shapers for noise calculations. A conventional direction is indicated for the
instantaneous noise currents and voltages to highlight the correlations.

and are obtained from the equivalent circuits of
Fig. 10, observing that the shaper output is read as an input-re-
ferred charge with the used normalization of

(21)

where , , , and are the instantaneous noise voltages and
currents, and is the sum of all capacitances connected to the
amplifier input, including the capacitive component of

( )

( )

(22)

and so from (21)

(23)

In (23), the mean-squared voltages and currents are given by
(16) and (17), is given by (15), and by (22). Putting (23)
in (20) and integrating over all values of(from to ), one
obtains the variance of the position figure. Frequency depen-
dence of (23) is dictated by factors or . The
integral of such factors over the frequency is often translated in
the time domain thanks to Parseval’s theorem [6], [7] or to

(24)

where the prime stands for time derivative. is the “time width
parameter” of or the “processing time” and, are nondi-
mensional form factors depending on the shape of and not

Fig. 11. Factor versush = n =n.  ranges from 0.5 to 1 depending on
the position of charge injection (from the middle of the array to the end points).

on its time scale. Numerical values of, are listed for most
cases in [8].

1) Case of Resistive Divider:Putting (23) with
in (20) and integrating over with the help of (24), we thus
obtain

(25)

where second index “” denotes the resistive-divider case and
is a factor depending on the position of charge

injection. Taking into account that (19) yields ,
one obtains . is plotted versus in
Fig. 11. It is worth noting that the dependence of (25) ontends
to vanish if the noise component brought about by the
resistive divider [see (16)] dominates over the others. This is
rather intuitive: in this case, the noises seen at the output of the
amplifiers are anticorrelated, and the noise of the sum is much
lower than the noise of individual ends. Therefore, the error in
the position figure (1) is dictated by the noise of one amplifier
only, and it is thus independent of the location of the charge
injection.

2) Case of Capacitive Divider:Putting (23) with
in (20) and integrating over with the help

of (24), we obtain

(26)

where second index “” denotes the capacitive-divider case. It
is worth noting that the dependence of (26) ontends again
to vanish if is dominated by the capacitive divider, i.e.,

, and the series-noise component dom-
inates. In this case, the cross talk between series noises makes
the noises at the preamplifiers’ outputs again anticorrelated, so
that the noise of the sum is much lower than the noise of in-
dividual ends. Therefore, the error in the position figure (1) is
dictated by the noise of one amplifier only and is thus indepen-
dent of the location of the charge injection.
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A comparison between resistive- and capacitive-divider
setups translates into a comparison of the variances (25) and
(26). The ratio between variances (26) and (25) is

(27)

which apparently depends on the processing time. The resis-
tive divider enhances the parallel noise (current noise of resistor

) and the capacitive divider enhances the series noise (ca-
pacitance enhances the total input capacitance ). We
so expect that the resistive divider has a better performance at
short processing times and the opposite for the capacitive di-
vider. However, a resistive setup with in the kohm range
typically enhances the parallel-noise contribution by several or-
ders of magnitudes with respect to capacitive setups, whereas a
capacitive setup with ranging from 50 to 500 pF typically
increases the series-noise contribution by one order of magni-
tude with respect to resistive setups. We thus expect that in most
cases, capacitive-charge division yields a higher resolution than
does resistive division at the optimum processing times.

As an example, consider an MWPC of the type of that of
Fig. 1(a) with 20 wires having pF (
pF), and two possible dividers: the first made by 20 resistors of
90 each ( k ) and the second made by 20 capac-
itances of 4.4 nF ( pF) each. For both cases, the
amplifier’s input transistor has a capacitance pF and
a transconductance mS. is assumed 0.5 nA and a
symmetrical trapezoidal shaper amplifier with a flattop to base
ratio of 1/3 is used ( , ). In Fig. 12, curve (1),

is shown where the aforementioned parameters are used,
and the “processing time” is the width of the sloped

edge of the trapezoid. Larger-than-unity values on the-axis
indicate convenience for resistive against capacitive divider and
vice versa. Curve (2) has been obtained by increasingpropor-
tionally to the processing time. In fact, the divider’s resistance
is a tradeoff between the transient time of the line and
the parallel noise. If is proportional to the processing time,
the transient time will be always an acceptable fraction of the
processing time and parallel noise will be not as high at longer
processing times. Curves (1) and (2) do not change noticeably
by varying in the 0.5–1 range. It can be seen that for very fast
processing times, shorter than200 ns in the considered case,
the resistive divider may yield a lower noise. At a processing
time of 1 s, however, the capacitive divider yields one-to-two
orders of magnitude of lower noise.

It is worth pointing out that with an array of photodetec-
tors coupled to a scintillator, the charge–collection mechanism
would be in the microsecond range, and therefore, the noise
analysis should be made at much longer processing times than
in Fig. 12. In this case, a capacitive-divider setup would be more
adequate.

A very simple system consisting of a discrete network of
resistors and capacitors, custom-made charge amplifiers, and
quasi-Gaussian shaper amplifiers has been arranged to check the
shown theory. The observed signals and noise have been found
in good agreement with (10), (25), and (26).

Fig. 12. Ratio of the variances of the position estimate for capacitive- and
resistive-divider setups in a 20 wire (C = 4:5 pF) MWPC with Frisch grid.
Parameters:g = 10 mS,C = 10 pF.C = 10 pF. Capacitive divider:
C = 285 pF,R = 50 M
, I = 0:5 nA. Resistive divider:C = 65

pF,nR = 1:8 k
, R = 6 k
, I = 0:5 nA.

Fig. 13. Equivalent circuit for calculation of the characteristic impedance.

A different position figure or

(28)

is sometimes used rather than (1). Equation (28) ranges from1
to 1 rather than from 0 to 1; thus, the signal swing gets doubled.
However, the squared noise of such a figure, as obtained with
the same procedure used to derive (25) and (26), is found to be
four times as large. Therefore, (28) has the same SNR as (1).
The shown analysis holds for both of them.

IV. CONCLUSION

The principal advantage of a resistive divider is the potentially
good linearity of position figure versus position relationship.
The price to be paid is a large amount of parallel noise. Such
noise contribution decreases as the processing time is decreased.
However, the processing time should be greater than the time
transient due to phase shifts in the line and the intrinsic
signal width caused by the charge-collection mechanism.

The principal advantages of a capacitive divider, instead, are a
fast response and a low noise. However, the dependence of posi-
tion figure versus position in this case is nonlinear. To minimize
such nonlinearity, large-value capacitances should be used in the
divider. However, these capacitances cannot be chosen too large
because the series noise of the preamplifier is enhanced as the
input capacitance is increased. A correct dimensioning of the
divider capacitance appears as a tradeoff between nonlinearity
and noise.
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Fig. 14. Elementary�-type symmetric cell.

A unified method to derive the waveforms and the noise of
the two configurations has been presented and discussed, and
indications for a correct dimensioning of the setups have been
shown. A possible development of the method consists of in-
cluding - and Lorentzian-noise components in the ampli-
fiers’ series noise.

APPENDIX I

A. Calculation of Characteristic Impedance

is the input impedance of a semi-infinite line of identical
cells. Let us connect a semi-infinite line of cells, as modeled by

, to the output of an individual cell of the same type, as shown
in Fig. 13.

The input impedance of such cell is again. By calculating
it on the circuit of Fig. 13, we obtain the following identity
(called ):

(29)

Solving (29) for , we obtain

(30)

Putting or in (30) yields the first column of (2).

B. Calculation of Transduction Exponent

Connect a voltage source to the input of the cell of Fig. 13.
Let us calculate the output voltage of this cell

(31)

Using as given by (30) in (31), we find

(32)

and hence

(33)

Putting or in (33) yields the second column of (2).

C. Equations for the Series Connection ofCells

Consider the cell of Fig. 14. The relations

(34)

hold. Using (30) and (33) with , (34) becomes

(35)

Now let us connect a second identical cell at its input and call
and the voltage and the current at the input of the second

cell. Similarly to (35)

(36)

and substituting (35) in (36), we obtain

(37)

Generalizing (37) for cells

(38)

Putting a terminating impedance at the end of the
line and calculating the ratio between the first and the second of
(38) yields (3).

Furthermore, dividing the second of (38) by yields the
useful relation

(39)

APPENDIX II

A. Impedance of an-Cell Resistive Line at Low Frequency

Consider the cascade ofcells of the type shown in Fig. 3(a),
short circuited at the far end. The impedance of such line is given
by (5) and (2). Let us develop the hyperbolic tangent term in (2)

(40)

where

(41)

Expanding terms and in (40) yields

(42)

Putting in (41) and assuming suitably low frequencies

(43)

(41) yields

(44)
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Substituting (44) in (42) yields

(45)

Substituting (45) and (2) in (5) yields the low-frequency
impedance of the -cell line or

(46)

This is the parallel connection of an equivalent resistorand
an equivalent capacitor . Equation (46) is an accept-
able approximation. In fact, the processing time must be greater
than (12), which yields (43).

B. Impedance of an-Cell Capacitive Line

Consider the cascade ofcells of the type shown in Fig. 3(b),
short circuited at the far end. The impedance of such line is given
by (5) and (2). A procedure similar to that of Appendix II-A,
where is substituted with can be used to simplify (5).
Instead of (43), we thus pose

(47)

and we finally get

(48)

The line impedance as expected is a pure capacitance, but two
simple contributions are now put into evidence. Equation (48)
is an acceptable approximation. In fact, (13) yields (47).

APPENDIX III
EQUIVALENT CIRCUIT FOR NOISE CALCULATIONS

Consider the circuit of Fig. 15, in which is the
impedance of a capacitance in parallel with a resistor

(49)

and , are the instantaneous voltage and current noises. Let
us propagate and to the output

(50)

and are the individual contributions of and to the
output. is the capacitive component of the input impedance.
We now want to refer the first of (50) to an equivalent input
current. To this purpose, we equal the first of (50) to the second,
where is substituted with the wanted equivalent current.
This yields

(51)

The overall equivalent noise current flown into the amplifier
virtual earth is so

(52)

Fig. 15. Circuit for noise analysis.

Equation (52) shows that the principal system noises may be
referred to the input by means of a unique noise current source
injecting noise into the amplifier virtual earth. Equation (52)
contains a term that can be conveniently visualized as
a voltage source injecting a current into the amplifier virtual
earth through a capacitor . The other components
of the current noise source (52) have spectral densities (bilateral)

(53)

(54)

where , or the series-noise equivalent resistor, is discussed
after (17). It can be shown that (53) dominates over (54) if

(55)

which is largely met in most cases, being a few tens of ohms
typically. We conclude that (52) yields in good approximation

(56)

or the sum of two uncorrelated components. Note that the sign
“ ” in (56) is not important, being and uncorrelated.
Equation (56) is visualized by means of an equivalent circuit
of the type of those shown in Fig. 10.
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