A new detector system for the ALC-spectrometer:
hardware solutions and simulations

A. Stoykov, K. Sedlak, R. Scheuermann

22 October 2007
Backward (BW) positron counters (7 - 8 segments)

Forward (FW) positron counters (7 segments)

Time-integral mode: \(A(H) = \frac{(B - F)}{(B + F)} \)

- **B, F** – BW and FW integral positron counts;
- **A** – measured asymmetry.

H = H_r – resonant loss of integral muon spin polarization

\[B_r = B - \Delta B, \quad F_r = F + \Delta F \quad \Rightarrow \quad A_r = A - \Delta A \]
Different field dependencies of the positron count rates in BW and FW detectors

Base line with a field-dependent slope

Difficulties in assignment of resonances and in line shape analysis
Field dependence of B and F due to:

- gain variation of PMTs
- muon beam spot movement and oscillations
- variation of the counters solid angle due to altered positron trajectories

Goal:

A new detector system with an optimized performance achieved by minimizing the effect of the above factors on the data quality

Realization → G-APDs instead of PMTs

- compactness and insensitivity to magnetic field;
- higher flexibility in the detector design;
- more possibilities for “tuning” the detector geometry, i.e., optimization for a certain field range;
- low operation voltage (~ 50 V vs. 2 kV).
New ALC detector Design Assembly

5T solenoid
length: 1000mm
warm bore: Ø200mm

Main Mounting Panels

Sample Holder / Cryostat

Nose (beam line extension)

Pb shield & mounting
New ALC detector Design Detector Module

Detector Segment M
Positron Counter FW + Muon Counter
(optional: TD-LF, muon rate ~ 30 kHz)

Detector Segment P (9x – 10x)
Positron Counter FW + Positron Counter BW

Detector Segments Holding Ring (2x)
New ALC detector Design Detector Module

Detector Module

Detector Segment M (optional)
Detector Segment P (9x – 10x)

Lemo Connectors (3x)
1. amplifier power (+12V)
2. G-APD biasing (-40V)
3. signal

Positron Counter FW
Positron Counter BW
Muon Counter (optional)

Detector Segments Holding Ring (2x)
New ALC detector Design Positron Counter BW

Scintillator (EJ-204, 120 x 33 x 5 mm) two grooves with glued-in BCF-92 fibers (not shown)

Optical Connector

G-APDs (2x)

Amplifier
Positron Counter – Prototype (ALCv1)

Tests March – April 2007

Detection of 28 MeV/c positrons

d5: \(U = 20.0 \text{ V}, \ I = 4.0 \mu \text{A}, \ N_e = 2.3 \times 10^3 \text{ s}^{-1} \)

Amplifier: gain ~ 20, bw ~ 100 MHz

EJ-204A (120 x 20 x 5 mm³)

BCF-92

SSPM 0701BG
The performance of a G-APD based positron counter satisfies the requirements of an ALC detector in terms of:

-- signal-to-noise ratio;
-- operation in high magnetic fields;
-- rate capabilities;
-- stability of the response vs. temperature variations;
-- long term stability and reliability.

Simulations indicate the possibility to have a more simple shape of the base line

⇒ more reliable line-shape analysis
Recent developments used in the new ALC-detector

Solid State Photo Multiplier
(Photonique SA, http://www.photonique.ch)

![SSPM 0701BG](image)

SSPM 0701BG

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDE, at 490nm</td>
<td>25 %</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>15V – 25V</td>
</tr>
<tr>
<td>Gain</td>
<td>$\leq 4 \cdot 10^5$</td>
</tr>
<tr>
<td>Temp. coeff. of Gain</td>
<td>< 1.0 %/C</td>
</tr>
<tr>
<td>Number of micro-cells</td>
<td>560</td>
</tr>
</tbody>
</table>

HV regulator module
(S.Ritt, R.Schmidt, LTP - PSI)

![HV regulator module](image)

PHV8 – 600VLC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of channels</td>
<td>8</td>
</tr>
<tr>
<td>Voltage</td>
<td>2V – 600V</td>
</tr>
<tr>
<td>Voltage accuracy</td>
<td>1mV</td>
</tr>
<tr>
<td>Current</td>
<td>200 μA (max)</td>
</tr>
<tr>
<td>Current meas. accuracy</td>
<td>1nA</td>
</tr>
<tr>
<td>Control</td>
<td>MSCB-interface</td>
</tr>
</tbody>
</table>
Construction – November 2007

First tests – December 2007

Commissioning
(LN$_2$ cryostat modified) – Spring 2008

New LHe cryostat – ?
A new detector system for the ALC-spectrometer: hardware solutions and simulations

2nd part, Kamil Sedlak
GEANT4

- Package for the simulation of the passage of particles through matter.
- Originally developed for the high energy physics detectors, nowadays extended to the applications in nuclear and accelerator physics, medicine and space science.

Why GEANT4 is interesting for μSR?

- It allows us to test new μSR apparatus before they are actually built, and to optimise their design for the best performance.
- It can help us to predict the impact of the modifications of the present μSR devices on the measurements.
- It can help us to better understand the measured results, (e.g. sources of background, it’s dependence on the magnetic field, ...)

GEANT4 – what it is?

- It is a framework (library) for developing the simulation code for a specific detector/apparatus rather than a ready-to-use toolkit. (There is some analogy to the concept of LABVIEW – the final simulation program is build-up from ready-to-use components as well as from user-developed specific objects.)

- Any GEANT4 application needs to develop its own specific components:
 - Specific detector geometry.
 - Specific signal treatment in the detector-sensitive volumes.
 - ...

- The µSR GEANT4 applications needed to extend the list of physics processes by the decay of the muon with spin and by the rotation of the muon spin in the magnetic field (more details will follow).
GEANT4 – why we have chosen it?

Why GEANT4?
- State of the art package (flagship in the particle detector simulation software).
- Continuously developed (by the scientific community).
- Extremely flexible (the trade-off for the need to write user-specific code).

Our Final Goal
- To have one common simulation package for all μSR devices (at least in PSI).
GEANT4 μSR simulations at PSI

- < 2004: Thomas Prokscha: GEANT 3 simulations for LEM spectrometer
- 2004/05: Taofiq Paraiso with support from Thomas Prokscha:
 - migration from GEANT3 (Fortran) to GEANT4 (c++).
 - inclusion of beamline components & magnetic field.
 - Result: Simulations running; changes in GEANT4 package required.
- 2004: NMI3 / JRA8 WPZ: Toni Shiroka and Tom Lancaster:
 - position sensitive detectors; ALC; LEM (Toni).
 - High Field at ISIS and PSI (Tom).
 - Idea: common development of the GEANT4 simulations for muon facilities.
 - Result: Default GEANT4 code; all μSR specific code separated to a stand-alone package; private version of muon decay and spin rotation.
- 2006: Zaher Salman takes over the simulations for High Field at ISIS.
- 2006: Foko proposal “PSI High Field Project”: Kamil Sedlak.
 - 2 year postdoc (start in January 2007).
 - Goal: design of the new High Field Instrument + continue the development towards the common μSR simulation package.
µSR GEANT4 code history

- Taofiq: ~50 classes, 22,000 lines of code
- Zaher: ~30 classes, 6,600 lines of code
- Now: ~21 classes, 5,600 lines of code
The main improvements done in 2007

- Replacing classes for the muon decay and for the muon spin rotation
- Output stored in the Root tree
- Generalisation of the simulation code for the different detector geometries
- Energy deposit treatment
- Thin layer simulation (G4CoulombScattering)
The implementation of the muon decay with spin and spin rotation in magnetic field into GEANT4 was done by Taofiq and Thomas.

At the same time, similar code was developed by T. MacPhail (TRIUMF?):
- uses NLO loop corrections for the muon decay.
- successful implementation into the official GEANT4 package (17 August 2004).

For historical reasons Taofiq implementation had been used at PSI till March 2007. Problems emerged when migrating to a new GEANT version (4.8.1) → segmentation faults.

Finally we switched to the official GEANT4 routines of T. MacPhail in April 2007:
- no segmentation faults.
- Michel spectrum shifted to a little bit lower energies due to the NLO corrections.
Output in the Root tree

- Root is an analysis tool, originally developed for the high energy physics community. It allows us to analyse the simulated results and plot them as graphs. It is based on C++.
- The results of the simulation are now stored in a Root tree, which is a kind of table, in which we store all data relevant for the further analysis.
- All data are stored in just one tree (i.e. in one file) ➔ no problem to relate different quantities of the same event (e.g. the initial muon polarisation/position with the position of the decaying muon or emerging positron).
- It is very easy to store just the variables of interest for a given purpose (for the given problem or detector design under study).
- Automatic file compression.
Root tree - list of our variables

Int_t runID;
Int_t eventID;
Double_t BFieldAtDecay_Bx;
Double_t BFieldAtDecay_By;
Double_t BFieldAtDecay_Bz;
Double_t BFieldAtDecay_B3;
Double_t BFieldAtDecay_B4;
Double_t BFieldAtDecay_B5;
Double_t muDecayPosX;
Double_t muDecayPosY;
Double_t muDecayPosZ;
Double_t muDecayTime;
Double_t muDecayPolX;
Double_t muDecayPolY;
Double_t muDecayPolZ;
Double_t muTargetTime;
Double_t muTargetPolX;
Double_t muTargetPolY;
Double_t muTargetPolZ;
Double_t fieldValue;
Int_t det_n;
Int_t det_ID[det_n];
Double_t det_edep[det_n];
Double_t det_edep_el[det_n];
Double_t det_edep_pos[det_n];
Double_t det_edep_gam[det_n];
Double_t det_edep_mup[det_n];
Int_t det_nsteps[det_n];
Double_t det_length[det_n]
Generalisation of the code

- Usually each instrument has its own simulation code (executable) which leads to difficulties when maintaining the code e.g. when upgrading to the new GEANT4 version or improving some general-purpose routine.

- Therefore some generalisation of the simulation code was done such that I have just one code (i.e. one executable) for different instruments (e.g. the high field project and for the ALC project).

- Switching between different detector setups is done via “steering files”, which are just text files that include all the details of the detector geometry, sensitive volumes, variables that will be saved into the output (Root) file, ...

- No need to recompile the simulation code when changing the instrument geometry (very useful for the instrument design optimisation) and even when switching between the different instruments.
Examples of the “steering” lines

- Example of a volume definition in the steering text file:

 /musr/ignore construct box pannelA 14 2.5 60 G4_Al 0 49.5 62
 log_World norot dead 11

- Example of how to define whether a variable will be stored in the output file:

 /musr/ignore rootOutput muIniMomX off

The code deals with the High Field and ALC projects, but it is not yet general enough to deal with the LEM due to the complications with combing many electric and magnetic fields together. This could be implemented in future.
A primitive definition of the “hit” was used in the past:

- The hit was recorded whenever a positron entered the sensitive detector volume.
- Only the positron tracks were followed.

Problems of this approach:

- Positron causes hit regardless of it’s energy deposit inside the sensitive volume ➔ it is not possible to apply any energy thresholds (always done in a real experiment).
- Background from particles other than positrons ignored.
- “Double hit” in the simulation may not correspond to the “double hit” in a real detector, because the time separation between the subsequent hits is completely ignored in the simulation.
Energy deposit treatment

- The high-energy-physics rule nr. 1 for the detector simulation – always sum up all energy deposits inside the sensitive volumes of the detector! Otherwise the simulation will not describe a real detector behavior, and will probably depend on technical parameters of the simulation (e.g. on cut-off parameters).

- The summation of energy deposits have therefore been implemented. Energy thresholds can be (and are) applied. Energy deposits of all particles are taken into account (not just positrons).

- Still room for further improvements. At the moment all the raw deposited energy is summed-up, while one could simulate its stochastic conversion into light in scintillators.
Traditionally, scattering of particles in a given material is simulated in GEANT4 by G4MultipleScattering, which combines together scattering on many atoms. This approximation is considered to be OK for materials thicker than $0.01X_0$. (X_0=radiation length).

Recently, G4CoulombScattering process was implemented, which simulates the scattering on individual “atoms”. This process aims to provide reliable predictions for materials of any thickness, however it is extremely computer-time demanding. Due to the slow calculation, it is in practice impossible to switch from G4MultipleScattering to G4CoulombScattering in µSR in all detector components.

We made it possible to switch to G4CoulombScattering in just some critical parts of the detector, i.e. in the kapton foil at the end of the beam pipe, triggers and titanium foils on the cryostat window.
Simulation for the ALC

- My task at PSI – simulation of the planned high field μSR instrument.
- However, we felt we should test the simulation on some real experiment in order to:
 - check that there are no obvious bugs in the simulation.
 - find out the critical issues of the simulation.
 - check to what level of precision the simulated predictions match with the real data.
- The ALC simulations were done independently by Tony Shiroka and myself.
An experimental test of the new ALC design was done in spring 2007.

Motivation: To have as simple (flat) base-line of the asymmetry signal as possible.
ALC test set-up

- GEANT4 simulation describes the main features of the data, however the relative normalisation is far from perfect.
- Absolute normalisation of the data is not known.
The gap between the backward and forward detectors leads to the complicated shape of the asymmetry.

The best shape seems to be achieved for zero gap between the detectors.
Length of the detectors

The length of the scintillator counters does not have a big effect on the asymmetry.
Length of the backward detector

Variation of the length of the scintillator counters just for the backward detector changes the absolute value of the asymmetry, however not the shape.
Radius of the forward detector

Variation of the radius of just one detector changes the slope of asymmetry (feature employed in our design).

Can we make the detector with flat constant base-line?
Target thickness strongly influences the slope of asymmetry.

- the slope of the asymmetry base-line will differ from sample to sample.
The final ALC design
Summary

- In the optimisation of the ALC design the following parameters were varied:
 - The gap between the backward and forward detectors
 - The length of the scintillator counters
 - The radius of the backward and forward detectors (independently)
 - The thickness of the sample
 - The thickness, radius and material of the supporting structure (which holds the detectors)

- Some critical aspects of the simulation reliability identified:
 - Precision of the geometry description (e.g. the target thickness)
 - Beam profile (e.g. asymmetry of the beam with respect to the z-axis; beam pitch; beam divergence)
 - Detailed knowledge of the magnetic field

We are hoping to learn more from the data taken by the new ALC instrument.