Plasmonics and Nanophotonics

Metallic nanostructures smaller than wavelength of interacting radiation have interesting far-field and near-field optical properties. For instance, the electromagnetic fields near such structures (near fields) are significantly amplified. This phenomenon is important for applications such as near-field microscopy, biosensing, surface enhanced Raman spectroscopy and nano-antennae. Also far-field properties of such structures are substantially different and can be tailored resulting in exciting phenomena such as extraordinary transmission through subwavelength hole arrays, negative refractive index, and strong birefringence. Our aim is to design novel nanomaterials for potential applications in nanophotonics, nanoplasmonics, biosensing and optical devices. The fabrication methods involve e-beam lithography (EBL), extreme ultraviolet interference lithography (EUV-IL), and nanoimprint lithography (NIL). Simulations using the finite-difference time-domain (FDTD) method are also employed.

Current Projects

    • Metallic Nanowire-Grids
    • High Aspect Ratio Plasmonic Nanostructures
    • Surface-Enhanced Raman Spectroscopy
    • Resonant Dielectric Nanostructures for Biosensing


V. K. Valev, B. De Clercq, C. G. Biris, X. Zheng, S. Vandendriessche, M. Hojeij, D. Denkova, Y. Jeyaram, N. C. Panoiu, Y. Ekinci, A. V. Silhanek, V. Volskiy, G. A. E. Vandenbosch, M. Ameloot, V. V. Moshchalkov, and T. Verbiest,
“Distributing the optical near-field for efficient field-enhancements in nanostructures,”
Adv. Mater. (2012).

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler,
“Deep-ultraviolet surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,”
J. Am. Chem. Soc. 134, 1966 (2012).

M. Lorente-Crespo, R. Ortuno, I. Alepuz-Benaches, C. Garcia-Meca, L. Wang, Y. Ekinci, A. Martinez,
“Strong magnetism by closely-spaced gold nanohoops,”
Proc. SPIE 8423, 84231V (2012).

L. Wang, H. H. Solak, and Y. Ekinci,
“High performance Al bi-layer wire-grid polarizer for deep-ultraviolet to infrared: modeling and design,”
Proc. SPIE 8424, 842429 (2012).

T. Siegfried, Y. Ekinci, H. H. Solak, O. J. F. Martin, and H. Sigg, “
Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors,”
Appl. Phys. Lett. 99, 263302 (2011).

B. Päivänranta, H. Merbold, R. Giannini, L. Buechi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, Y. Ekinci,
“High Aspect Ratio Plasmonic Nanostructures for Sensing Applications,”
ACS Nano 5, 6374 (2011).

B. Päivänranta, P. K. Sahoo, E. Tocce, V. Auzelyte, Y. Ekinci, H. H. Solak, C.-C. Liu, K. O. Stuen, P. F. Nealey, and C. David,
“Nanofabrication of Broad-Band Antireflective Surfaces Using Self-Assembly of Block Copolymers,”
ACS Nano 5, 860 (2011).

Y. Jeyaram, S. K. Jha, M. Agio, J. F. Löffler, and Y. Ekinci,
“Magnetic metamaterials in the blue range using aluminum nanostructures,”
Optics Lett. 35, 1656 (2010).