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Abstract: A model for the coherence properties of free-electron lasers
(FELs) in time and frequency domains is introduced within the framework
of classical second-order coherence theory of nonstationary light. An
iterative phase-retrieval algorithm is applied to construct an ensemble of
field realizations in both domains, based on single-pulse spectra measured
at the Linac Coherent Light Source (LCLS) in self-amplified spontaneous
emission mode. Such an ensemble describes the specific FEL pulse train
in a statistically averaged sense. Two-time and two-frequency correlation
functions are constructed, demonstrating that the hard X-ray free-electron
laser at LCLS in this case behaves as a quasistationary source with low
spectral and temporal coherence. We also show that the Gaussian Schell
model provides a good description of this FEL.
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1. Introduction

Owing to their high brightness, ultrashort pulse duration, and high degree of transverse spatial
coherence, X-ray free-electron lasers (XFELs) [1–3] enable novel research in material science,
structural biology, and condensed matter physics [4]. Most of the experimental techniques uti-
lize the coherent fraction of the radiation, including methods such as serial femtosecond crys-
tallography (SFX) [5,6], coherent X-ray diffraction imaging (CXDI) [7], X-ray holography [8],
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and X-ray photon correlation spectroscopy (XPCS) [9]. Hence a thorough understanding of the
coherence properties of XFELs [10–13] is of paramount importance.

In this paper we present a numerical method for generating ensembles of pulses representing
beams such as those produced by XFELs. These mathematically constructed fields describe the
statistical properties of the pulse train in an ensemble-averaged sense. Rather than assuming
average spectral and temporal data as in [14], we employ actual measured spectra of individual
pulses together with partial knowledge of their average time-domain intensity to construct the
spectral phases and the temporal pulse realizations. The XFEL pulses, being rather incoherent
in time but originating within similar stochastic conditions, are each represented by an ensemble
of realizations. The train of pulses is subsequently statistically governed by a collection of such
ensembles, one for each measured spectrum. For the field reconstruction, we apply a temporal-
domain counterpart of the spatial iterative Fourier-transform algorithm (IFTA) [15]. The one-
dimensional phase retrieval problem does not possess a unique solution [16], and in our case
we only have at our disposal the average pulse length in the time domain. The solution would
be non-unique even if, in addition to the spectrum, we had access to the individual temporal
intensity of each measurement. In our statistical analysis we use this ambiguity to advantage to
build ensembles of field realizations for the measured pulses. In the phase retrieval process the
correct spectrum is obtained by using it as an explicit condition in the frequency domain. Due to
lack of detailed information, the mean temporal intensity is constructed to be Gaussian with the
known average pulse length. This is accomplished by employing in the time domain a Gaussian
weighting function whose width is appropriately adjusted as the iteration proceeds. Each of the
ensuing fields may be regarded as a physically admissible XFEL pulse realization with exact
correspondence in the time and frequency domains. Moreover, the ensembles representing the
pulses statistically match the experimentally measured spectral and temporal results, and the
ensemble associated with the whole pulse train can thereby be expected to faithfully reproduce
the statistics of the XFEL source. From the overall ensemble of spectral and temporal field
realizations we then construct two-frequency and two-time correlation functions [17], which
describe pulse trains of partial spectral and temporal coherence fully within the framework of
the classical second-order coherence theory of nonstationary light.

In previous investigations [10–13], time-domain coherence of XFEL pulse trains has been
considered using a temporal correlation function that depends only on time delay. Such an
approach is adequate for stationary fields [18], whereas two-time correlation functions and
time-resolved measurements are needed to completely characterize the temporal coherence
properties of pulse trains [19, 20]. We illustrate our model using spectra of individual XFEL
pulses measured at the Linac Coherent Light Source (LCLS), which turns out to behave as a
quasistationary source despite the femtosecond-scale pulse duration. In addition, the coherence
properties of the XFEL source are found to match extremely closely the predictions of the
Gaussian Schell model [18, 21].

2. Correlation functions

We denote the frequency-domain and time-domain (scalar, complex) electric fields of the nth in-
dividual pulse in a pulse train by En(ω −ω0) and En(t), respectively. The mean frequency [18]
of the pulse train is given by ω0 =

∫ ∞
0 ωS2(ω)dω/

∫ ∞
0 S2(ω)dω , where S(ω) is the average

spectrum defined below. Introducing further Ω = ω −ω0, we may write the spectral field rep-
resentation of an individual pulse in the form

En(Ω) =
√

Sn(Ω)exp [iφn(Ω)] , (1)
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where Sn(Ω) = |En(Ω)|2 represents the spectral density of the pulse and φn(Ω) is its spectral
phase. In the envelope representation, the temporal field is

En(t) = An(t)exp(−iω0t) , (2)

where

An(t) =
√

In(t)exp [iφn(t)] =
∫ ∞

−∞
En(Ω)exp(−iΩt)dΩ, (3)

and In(t) = |En(t)|2 = |An(t)|2 is the temporal intensity profile of an individual pulse, φn(t)
being the envelope phase.

By regarding the individual pulses (which generally are of different spectral and temporal
form) as members of a statistical ensemble, we may introduce correlation functions in both
spectral and temporal domains. In the second-order coherence theory of nonstationary light, the
appropriate spectral correlation function is the two-frequency cross-spectral density function
(CSD), defined as an ensemble average

W (Ω1,Ω2) = 〈E∗(Ω1)E(Ω2)〉= 1
N

N

∑
n=1

E∗
n (Ω1)En(Ω2), (4)

where N is the number of pulses in the ensemble. We may also view the CSD as a function of the
average and difference coordinates Ω = 1

2 (Ω1 +Ω2) and ΔΩ = Ω2 −Ω1. The mean spectrum
of the pulse train is given by S(Ω) =W (Ω,0) and its complex degree of spectral coherence is
defined as

μ(Ω,ΔΩ) =
W (Ω,ΔΩ)

√
S(Ω−ΔΩ/2)S(Ω+ΔΩ/2)

. (5)

Considered as a function of ΔΩ, the characteristic breadth of |μ(Ω,ΔΩ)| provides the spectral
coherence width of the pulse train at frequency Ω.

Time-domain correlations of nonstationary fields are characterized by the two-time mutual
coherence function (MCF), defined as

Γ(t1, t2) = 〈E∗(t1)E(t2)〉= exp [−iω0 (t2 − t1)]
1
N

N

∑
n=1

A∗
n(t1)An(t2). (6)

We may express the MCF in terms of the average and difference coordinates t = 1
2 (t1 + t2) and

Δt = t2− t1. Then the mean temporal intensity is given by I(t) = Γ(t,0) and the complex degree
of temporal coherence is defined as

γ(t,Δt) =
Γ(t,Δt)

√
I(t −Δt/2)I(t +Δt/2)

. (7)

Again, if we consider |γ(t,Δt)| as a function of Δt, its width is a measure of the coherence time
at time instant t. We emphasize that the spectral coherence width may depend strongly on Ω
and the coherence time on t; extreme variations occur, for instance, in supercontinuum pulse
trains [22, 23].

Time-resolved measurements of the temporal (and spectral) intensity and phase of individual
ultrashort pulses are possible in the visible region, which in principle allow a direct construction
of the two-time and two-frequency correlation functions. Measurement of the temporal proper-
ties of XFEL pulses has been intensively studied [24]. However, to our knowledge there are no
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methods that can provide the required temporal resolution or information about the temporal
phase. Coherence measurements yielding time-integrated results in Michelson-type interfero-
metric setups have been performed [25], but they do not enable the construction of the full
two-time MCF. This raises the question what information can be extracted from such measure-
ments.

It follows at once from Eqs. (2)–(4) and (6) that the CSD and MCF are related by the gener-
alized Wiener–Khintcine theorem as

Γ(t1, t2) = exp [−iω0(t2 − t1)]
∫∫ ∞

−∞
W (Ω1,Ω2)exp [i(Ω1t1 −Ω2t2)]dΩ1dΩ2, (8)

which, if the average and difference coordinates are used, becomes

Γ(t,Δt) = exp(−iω0Δt)
∫∫ ∞

−∞
W (Ω,ΔΩ)exp [−i(ΩΔt +ΔΩt)]dΩdΔΩ. (9)

Inverting this expression, we find that the mean spectrum of the pulse train is given by

S(Ω) =
1

(2π)2

∫∫ ∞

−∞
Γ(t,Δt)exp [i(ω0 +Ω)Δt]dtdΔt. (10)

Since temporally integrated Michelson-type measurements provide us with the quantity

Γ̄(Δt) =
1

2π

∫ ∞

−∞
Γ(t,Δt)dt, (11)

the average spectrum may be written in the form

S(ω̄ −ω0) =
1

2π

∫ ∞

−∞
Γ̄(Δt)exp(iω̄Δt)dΔt, (12)

where ω̄ = (ω1 +ω2)/2. This result is formally equivalent with the classic Wiener–Khintchine
theorem for stationary light [18]. However, instead of the MCF for stationary fields, we con-
sider here the time integral of the two-time MCF. Equation (12) shows that the mean spectrum
of a pulse train is obtained from time-integrated Michelson interferometer measurements. In
reverse, the time-integrated MCF can be obtained from the mean spectrum according to

Γ̄(Δt) =
∫ ∞

0
S(ω̄ −ω0)exp(−iω̄Δt)dω̄ . (13)

The characteristic width of the normalized form of the temporally integrated MCF,

γ̄(Δt) = Γ̄(Δt)/Γ̄(0), (14)

may then be considered as a measure of the effective coherence time of the pulse train.

3. Iterative Fourier-transform algorithm (IFTA)

Our model for constructing ensembles of pulses, illustrated in Fig. 1, is based on the knowledge
of a large number of spectra of individual pulses that have been measured for XFEL source at
LCLS using full pulse energy of ∼ 2 mJ, repetition rate of 120 Hz, mean photon energy of
∼ 8.37 keV, and pulse length of 34 fs (corresponding to a FWHM of 40 fs). More details of
the experiment can be found in [26]. In the time domain we assume that the mean temporal
evolution of the pulse train is of the Gaussian form

I(t) = I0 exp
(−2t2/T 2) , (15)
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where the mean pulse duration is T = 34 fs. Nevertheless, shorter Gaussian pulses and also any
non-Gaussian mean pulse shapes, which could arise in different FEL operation regimes, could
be considered equally well by using an appropriate average pulse shape. Under such conditions
the pulse train might exhibit different statistics, but the method presented here would still be
fully applicable.

S  (Ω), φ    (Ω)

temporal constraintsspectral constraints

FT

IFT

n

S      (Ω), φ    (Ω)nm    nm

I    (t), φ    (t)nm  nm

I    (t), φ    (t)nm nm´

 nm

´   

Fig. 1. Flow chart of the temporal iterative Fourier-transform algorithm (IFTA).

In the initialization stage of the algorithm we associate with the (measured) pulse spectrum
Sn(Ω) of the nth field realization a random phase distribution φn1(Ω) to generate the initial
spectral field En1(Ω) =

√
Sn1(Ω)exp [iφn1(Ω)], as in [14]. We then use Eq. (3) to transform

into the time domain, which gives An1(t) =
√

In1(t)exp [iφn1(t)]. The temporal constraints in
Fig. 1 mean that the time-domain intensity distribution of the pulse is multiplied by a Gaussian
function of the same form as in Eq. (15), but with the width given by m× 37 fs, where m is
the order of the iteration round in question. Starting from T = 37 fs and increasing the width
at each iteration step (so that eventually the Gaussian is almost flat) was found to lead to the
average intensity whose e−2-width is 34 fs. The temporal phase of the field is left untouched
implying that the time-domain field at this stage is A′

n1(t) =
√

I′n1(t)exp [iφn1(t)]. We next make
use of the inverse of Eq. (3), i.e.,

E ′
n1(Ω) =

1
2π

∫ ∞

−∞
A′

n1(t)exp(iΩt)dt, (16)

to convert back into the frequency domain. Here we set the spectrum to its measured form but
leave the phase as it is, thus obtaining En2(Ω) =

√
Sn2(Ω)exp [iφn2(Ω)]. The iterative process

is continued as long as needed for the results to converge, i.e., until we achieve the situation
S′nm(Ω) = |E ′

nm(Ω)|2 ≈ Sn(Ω).

4. Results and discussion

The algorithm results in an ensemble of pulse realizations with individual spectra that match
the measured ones but have certain spectral phase distributions as well as temporal intensity
profiles and phases that differ from one another. The CSD and MCF are then constructed using
Eqs. (4) and (6). A single execution of the IFTA algorithm was found to lead to a temporal pulse
of varying complicated shape, which depends on the chosen random initial spectral phase. This
demonstrates a low degree of phase correlations for the individual XFEL pulses, defined as

Φ(Ω1,Ω2) = 〈exp [−iφ(Ω1)]exp [iφ(Ω2)]〉

=
1
L

L

∑
l=1

exp [−iφl(Ω1)]exp [iφl(Ω2)] (17)
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and

Θ(t1, t2) = exp(−iω0Δt)〈exp [−iφ(t1)]exp [iφ(t2)]〉

= exp(−iω0Δt)
1
L

L

∑
l=1

exp [−iφl(t1)]exp [iφl(t2)] (18)

in the spectral and temporal domains, respectively. The summation here is taken over L real-
izations obtained for an individual measured spectrum. To construct the CSD and MCF using
Eqs. (4) and (6), we therefore average over a grand ensemble consisting of L realizations for
each of the M single spectral pulse measurements in the pulse train. These final ensembles, both
in time and frequency domains, thus contain a total of N = M×L realizations.

−6 −4 −2 0 2 4
0

1

Ω [1016 Hz]

 S
 [a

.u
.] −0.2 0 0.2

0

1

ΔΩ [ 1015 Hz]

|Φ
|

Fig. 2. Experimentally measured spectrum (solid red line) of a single pulse and the mean
spectrum (solid blue line) of 1100 measured pulses. The mean spectrum equals the average
spectrum calculated through IFTA. The inset shows the magnitude of the normalized av-
erage spectral phase-correlation function Φ constructed with 200 spectral field realizations
related to the single-pulse spectrum.

−100 −50 0 50 100
0

1

t [fs]

 I 
[a

.u
.] −0.2 0 0.2

0

1

Δt [fs]

|Θ
|

Fig. 3. Temporal intensity distribution (red line) constructed by averaging over 20 field
realizations computed by IFTA with different phases associated with the single measured
pulse shown in Fig. 2. The mean temporal intensity (blue line) is found by reconstructing
with IFTA 20 realizations of varying phase profiles for each of the 1100 measured spectra,
to obtain 22000 time-domain realizations, and averaging. The inset shows the magnitude
of the normalized temporal phase-correlation function Θ calculated by averaging over 200
realizations with the same measured spectrum.

Numerical results, averaged over M = 1100 measured pulses with L = 20 realizations for
each, are shown in Figs. 2 and 3. The spectral phase correlation function Φ of a single pulse,
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Fig. 4. Absolute values of the CSD (top, shown also in terms of the related photon energies
E and ΔE) and the MCF (bottom) corresponding to 22000 reconstructed pulse realizations.
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Fig. 5. Complex degrees of spectral (top) and temporal (bottom) coherence of the XFEL
pulses. The top figure is shown also in terms of the associated photon energies E and ΔE.

displayed in the inset of Fig. 2, is constructed using Eq. (17) with L = 200 realizations (for bet-
ter accuracy) and averaged over the frequencies. We see that its effective width in ΔΩ is only
a tiny fraction of the mean spectral spread of the pulses. The corresponding temporal intensity
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distributions, together with the time-averaged phase correlation function given by Eq. (18), are
illustrated in Fig. 3. Clearly, the effective width of Θ in Δt is a small fraction of the mean tem-
poral pulse duration. Like most FELs operating today, this source is based on self-amplification
of spontaneous emission (SASE) [27]. Spontaneous gain gives rise to variations from bunch
to bunch leading to large shot-to-shot spectral diversity, as seen from Fig. 2, and indicating a
low degree of spectral coherence. This fact is reflected in the CSD and MCF plots displayed in
Fig. 4, which appear as narrow horizontal lines (note the different scales on the horizontal and
vertical axes).

The normalized CSD and MCF, defined by Eqs. (5) and (7), respectively, are shown in Fig. 5.
They confirm the low spectral and temporal coherence and the almost stationary nature of the
XFEL pulse train. The width of |μ(Ω,ΔΩ)| in the ΔΩ direction (spectral coherence width) is
nearly independent of Ω, i.e., |μ(Ω,ΔΩ)| ≈ |μ(ΔΩ)|, and similarly, the width of |γ(t,Δt)| in
the Δt direction (coherence time) is nearly independent of t, i.e., |γ(t,Δt)| ≈ |γ(Δt)|. In this
case, |γ(Δt)| is essentially the integrated quantity γ̄(Δt) in Eq. (14). Figure 6 shows |μ(ΔΩ)|
and |γ(Δt)|, averaged over Ω and t, respectively, together with Gaussian fits. Since the spectral
coherence width is small compared to the average spectral spread and the coherence time is
short compared to the mean pulse duration, this FEL behaves as a quasistationary source in the
language of second-order coherence theory of nonstationary light.

We can approximate the XFEL pulse train using the Gaussian Schell model [18, 21, 28, 29].
The mean intensity then is given by the Gaussian function I(t) of Eq. (15) (with duration T ),
the spectrum has a Gaussian form

S(Ω) = S0 exp
(−2Ω2/Σ2) , (19)
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Fig. 6. Widths of the averaged normalized CSD (top) and the MCF (bottom) as functions of
the difference coordinates. The dots represent the data points given by IFTA and the solid
lines are Gaussian fits.
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and we take Gaussian distributions for the complex degrees of spectral and temporal coherence,

μ(Ω,ΔΩ) = exp
(−ΔΩ2/2Σ2

μ
)
, (20)

γ(t,Δt) = exp
(−Δt2/2T 2

γ
)

exp(−iω0Δt) , (21)

respectively. The parameters T , Σ, Σμ , and Tγ are not independent. In the quasistationary case,
when Σ � Σμ , T � Tγ , and the time–bandwidth product TΣ � 1, the relations Σμ = 2/T and
Tγ = 2/Σ hold [29]. A Gaussian fit of the average spectrum shown in Fig. 2 gives Σ = 4.35×
1016 Hz. Hence, with T = 34 fs, we have TΣ = 1500, Σμ = 5.9×1013 Hz, and Tγ = 0.046 fs.
Figure 6 displays the mean cross-sections |μ(ΔΩ)| and |γ(Δt)| of the absolute values of the
normalized CSD and MCF. The Gaussian fits give Σμ ≈ 5.7× 1013 Hz and Tγ ≈ 0.046 fs, in
excellent agreement with the Gaussian Schell model. The widths of Gaussian functions in Fig. 6
correspond to a drop from the peak values of unity to e−0.5 when the non-zero tails were taken
into account.

5. Conclusions

We have introduced an iterative mathematical technique for the construction of ensembles of
pulses in both spectral and temporal domains. The model is based on spectral measurements
of individual pulses and on knowledge of the mean pulse duration. Such ensembles were used
to construct two-time and two-frequency correlation functions that fully describe the second-
order coherence properties of the pulse train. In an explicit example we considered a particular
FEL, which turned out to emit quasistationary pulse trains (with low spectral and temporal co-
herence). In addition, the source was found to obey the Gaussian Schell model. We emphasize,
however, that the method put forward here is applicable to any other FEL, some of which are
likely to be far more coherent, and in fact to any other pulsed laser source.
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