Phase Boundaries

Gruppe Berg.jpg
Phase Boundary group, Dec 2017

Project description

REM.JPG Reactions at phase boundaries are of high importance for the safety and performance of modern batteries. A phase boundary is sometimes a simple electrode-electrolyte interface (as in electrochemical supercapacitors) but normally an interphase is formed there (SEI, solid electrolyte interphase in lithium and lithium-ion batteries). We investigate phase boundaries with advanced in situ and post mortem analytical techniques. The prominent methods include Raman and infrared microscopy and DEMS (differential electrochemical mass spectrometry).


Publications & Posters

  • Lanthanum manganite-based air electrode catalysts and their application to lithium-air batteries: Effects of carbon support oxidation M. Saito, Y. Tachikawa, T. Fujinami, K. Mikami, Y. Hayashi, H. Shiroishi, D. Streich, E.J. Berg, P. Novák
    Electrochemistry 6 (5), 265-271 (2018)
    DOI: 10.5796/electrochemistry.18-00034OG-5410 , OG-5412
  • _In situ_ and operando Raman spectroscopy of layered transition metal oxides for Li-ion battery cathodes E. Flores, P. Novák, E.J. Berg
    Front. Energ. Res. 6 (82), (2018)
    DOI: 10.3389/fenrg.2018.00082OG-5410 , OG-5412
  • Elucidation of LixNi0.8Co0.15Al0.05O2 Redox Chemistry by Operando Raman Spectroscopy E. Flores, N. Vonrüti, P. Novák, U. Aschauer, E.J. Berg
    Chem. Mater. 30, 4694−4703 (2018)
    DOI: 10.1021/acs.chemmater.8b01384OG-5410 , OG-5412
  • Graphite as cointercalation electrode for sodium‐ion batteries: Electrode dynamics and the missing solid electrolyte interphase (SEI) M. Goktas, C. Bolli, E.J. Berg, P. Novák, K. Pollok, F. Langenhorst, M. v. Roeder, O. Lenchuk, D. Mollenhauer, P. Adelhelm
    Adv. Energy Mater. 1702724 (2018)
    DOI: 10.1002/aenm.201702724OG-5410 , OG-5412
  • Operando monitoring of early Ni-mediated surface reconstruction in layered lithiated Ni–Co–Mn oxides D. Streich, C. Erk, A. Guéguen, P. Müller, F.-F. Chesneau, E.J. Berg
    J. Phys. Chem. C 121 (25), 13481-13486 (2017)
    DOI: 10.1021/acs.jpcc.7b02303OG-5410 , OG-5412
  • Interface and safety properties of phosphorus-based negative electrodes in Li-ion batteries C. Marino, M. El Kazzi, E.J. Berg, M. He, C. Villevieille
    Chem. Mater. 29 (17), 7151-7158 (2017)
    DOI: 10.1021/acs.chemmater.7b01128OG-5410 , OG-5411 , OG-5412 , OG-5414
  • A new concept of an air-electrode catalyst for Li2O2 decomposition using MnO2 nanosheets on rechargeable Li-O2 batteries M. Saito, S. Kosaka, T. Fujinami, Y. Tachikawa, H. Shiroishi, D. Streich, E.J. Berg, P. Novák, S. Seki
    Electrochim. Acta 252, 192-199 (2017)
    DOI: 10.1016/j.electacta.2017.08.183OG-5410 , OG-5412
  • Comparative operando study of degradation mechanisms in carbon-based electrochemical capacitors with Li2SO4 and LiNO3 electrolytes K. Fic, M. He, E.J. Berg, P. Novák, E. Frackowiak
    Carbon 120, 281-293 (2017)
    DOI: 10.1016/j.carbon.2017.05.061OG-5410 , OG-5412
  • XPS study of the interface evolution of carbonaceous electrodes for Li-O2 batteries during the 1st cycle A. Guéguen, P. Novák, E.J. Berg
    J. Electrochem. Soc. 163 (13), A2545-A2550 (2016)
    DOI: 10.1149/2.0351613jesOG-5410 , OG-5412
  • Influence of aqueous electrolyte concentration on parasitic reactions in high-voltage electrochemical capacitors M. He, K. Fic, E. Frąckowiak, P. Novák, E.J. Berg
    Energy Storage Mat. 5, 111-115 (2016)
    DOI: doi:10.1016/j.ensm.2016.06.001OG-5410 , OG-5412
  • Decomposition of LiPF6 in high energy lithium-ion batteries studied with online electrochemical mass spectrometry A. Guéguen, D. Streich, M. He, M. Mendez, F.F. Chesneau, P. Novák, E.J. Berg
    J. Electrochem. Soc. 163 (6), A1095-A1100 (2016)
    DOI: 10.1149/2.0981606jesOG-5410 , OG-5412
  • Online electrochemical mass spectrometry of high energy lithium nickel cobalt manganese oxide/graphite half- and full-cells with ethylene carbonate and fluoroethylene carbonate based electrolytes D. Streich, A. Guéguen, M. Mendez, F. Chesneau, P. Novák, E.J. Berg
    J. Electrochem. Soc. 163 (6), A964-A970 (2016)
    DOI: 10.1149/2.0801606jesOG-5410 , OG-5412
  • Effects of solvent, lithium salt, and temperature on stability of carbonate-based electrolytes for 5.0 V LiNi0.5Mn1.5O4 electrodes M. He, L. Boulet-Roblin, P. Borel, C. Tessier, P. Novák, C. Villevieille, E.J. Berg
    J. Electrochem. Soc. 163 (2), A83-A89 (2016)
    DOI: 10.1149/2.0201602jesOG-5410 , OG-5411 , OG-5412
  • Ageing phenomena in high-voltage aqueous supercapacitors investigated by in situ gas analysis M. He, K. Fic, E. Frąckowiak, P. Novák, E.J. Berg
    Energy Environ. Sci. 9, 623 (2016)
    DOI: 10.1039/c5ee02875bOG-5410 , OG-5412
  • Investigation of Li-Ion solvation in carbonate based electrolytes using near ambient pressure photoemission M. El Kazzi, I. Czekaj, E.J. Berg, P. Novák, M.A. Brown
    Top Catal 59, 628–634 (2016)
    DOI: 10.1007/s11244-015-0518-2OG-5410 , OG-5412 , OG-5414
  • Electrode-electrolyte interface characterization of carbon electrodes in Li-O2 batteries: capabilities and limitations of infrared spectroscopy D. Streich, P. Novák
    Electrochim. Acta 190, 753–757 (2016)
    DOI: 10.1016/j.electacta.2015.12.061OG-5410 , OG-5412
  • Visualization of 0-0 peroxo-like dimers in high-capacity layered oxides for Li-ion batteries E. McCalla, A.M. Abakumov, M. Saubanère, D. Foix, E.J. Berg, G. Rousse, M.-L. Doublet, D. Gonbeau, P. Novák, G. van Tendeloo, R. Dominko, J.-M. Tarascon
    Science 350 (6267), 1516-1521 (2015)
    DOI: 10.1126/science.aac8260OG-5410 , OG-5412
  • Rechargeable batteries: Grasping for the limits of chemistry E.J. Berg, C. Villevieille, D. Streich, S. Trabesinger, P. Novák
    J. Electrochem. Soc. 162 (14), A2468-A2475 (2015)
    DOI: 10.1149/2.0081514jesOG-5410 , OG-5411 , OG-5412 , OG-5413
  • Concentration effects on the entropy of electrochemical lithium deposition: implications for Li+ solvation M.J. Schmid, J. Xu, J. Lindner, P. Novák, R. Schuster
    J. Phys. Chem. B 119, 13385-13390 (2015)
    DOI: 10.1021/acs.jpcb.5b07670OG-5410 , OG-5412 , OG-5413
  • Reversible Li-intercalation through oxygen reactivity in Li-rich Li-Fe-Te oxide materials E. McCalla, A.S. Prakash, E. Berg, M. Saubanère, A.M. Abakumov, D. Foix, B. Klobes, M.-T. Sougrati, G. Rousse, F. Lepoivre, S. Mariyappan, D. Foix, B. Klobes, M.-T. Sougrati, G. Rousse, F. Lepoivre, S. Mariyappan, M.-L. Doublet, D. Gonbeau, P. Novak, G. Van Tendeloo, R.P. Hermann, J.-M. Tarascon
    J. Electrochem. Soc. 162 (7), A1341-A1351 (2015)
    DOI: 10.1149/2.0991507jesOG-5410 , OG-5412
  • Understanding the roles of anionic redox and oxygen release during electrochemical cycling of lithium-rich layered Li4FeSbO6 E. McCalla, M.T. Sougrati, G. Rousse, E. Jämstorp Berg, A. Abakumov, N. Recham, K. Ramesha, M. Sathiya, R. Dominko, G. Van Tendeloo, P. Novák, J.-M. Tarascon
    J. Am. Chem. Soc. 137 (14), 4804–4814 (2015)
    DOI: 10.1021/jacs.5b01424OG-5410 , OG-5412
  • Understanding the interaction of the carbonates and binder in Na-Ion batteries: A combined bulk and surface study L.O. Vogt, M. El Kazzi, E. Jämstorp Berg, S. Pérez Villar, P. Novák, C. Villevieille
    Chem. Mater. 27, 1210-1216 (2015)
    DOI: 10.1021/cm5039649OG-5410 , OG-5411 , OG-5412 , OG-5414
  • _In situ_ gas analysis of Li4Ti5O12 based electrodes at elevated temperatures M. He, E. Castel, A. Laumann, G. Nuspl, P. Novák, E.J. Berg
    J. Electrochem. Soc. 162, 6, A870-A876 (2015)
    DOI: 10.1149/2.0311506jes]OG-5410 , OG-5411 , OG-5412
  • Activation mechanism of LiNi0.80Co0.15Al0.05O2: Surface and bulk operando electrochemical, differential electrochemical mass spectrometry, and X‑ray diffraction analyses R. Robert, Ch. Bünzli, E.J. Berg, P. Novák
    Chem. Mater. 27, 526−536 (2015)
    DOI: 10.1021/cm503833bOG-5410 , OG-5412 , OG-5413 , OG-5414
  • Towards a stable organic electrolyte for the Lithium oxygen battery B.D. Adams, R. Black, Z. Williams, R. Fernandes, M. Cuisinier, E. Jaemstorp Berg, P. Novák, G.K. Murphy, L.F. Nazar
    Adv. Energy Mater. 5, 1400867 (2015)
    DOI: 10.1002/aenm.201400867OG-5410 , OG-5412
  • Differential electrochemical mass spectrometry study of the interface of xLi2MnO3·(1−x)LiMO2 (M = Ni, Co, and Mn) Material as a positive electrode in Li-Ion batteries E. Castel, E.J. Berg, M. El Kazzi, P. Novak, C. Villevieille
    Chem. Mater. 26, 5051-5057 (2014)
    DOI: 10.1021/cm502201zOG-5410 , OG-5411 , OG-5412 , OG-5414
  • Combined in situ Raman and IR microscopy at the interface of a single graphite particle with ethylene carbonate/dimethyl carbonate P. Lanz, P. Novák
    J. Electrochem. Soc. 161, 10, A1555-A1563 (2014).
    DOI: 10.1149/2.0021410jesOG-5410 , OG-5412
  • Bulk and surface analyses of ageing of a 5V-NCM positive electrode material for lithium-ion batteries C. Villevieille, P. Lanz, Ch. Bünzli, P. Novák
    J. Mater. Chem. A 2, 6488-6493 (2014).
    DOI: 10.1039/C3TA13112BOG-5410 , OG-5411 , OG-5412 , OG-5413
  • _Ex situ_ and in situ Raman microscopic investigation of the differences between stoichiometric LiMO2 and high-energy xLi2MnO3·(1–x)LiMO2 (M = Ni, Co, Mn) P. Lanz, C. Villevieille, P. Novák
    Electrochim. Acta 130, 206–212 (2014).
    DOI: 10.1016/j.electacta.2014.03.004OG-5410 , OG-5411 , OG-5412
  • Electrochemical activation of Li2MnO3 at elevated temperature investigated by in situ Raman microscopy P. Lanz, C. Villevieille, P. Novák
    Electrochim. Acta 109, 426-432 (2013).
    DOI: 10.1016/j.electacta.2013.07.130OG-5410 , OG-5411 , OG-5412
  • Oxygen release from high energy xLi2MnO3.(1 x)LiMO2 (M=Mn,Ni,Co): Electrochemical, Differential Electrochemical Mass Spectrometric, in situ pressure, and in situ temperature characterization P. Lanz, H. Sommer, M. Schulz-Dobrick, P. Novák
    Electrochim. Acta 93, 114-119 (2013).
    DOI: 10.1016/j.electacta.2013.01.105OG-5410 , OG-5411 , OG-5412
  • Critical aspects in the development of lithium–air batteries N. Garcia-Araez, P. Novák
    J Solid State Electrochem 17, 1793–1807 (2013).
    DOI: 10.1007/s10008-013-1999-1OG-5410 , OG-5412
  • Characterization of a model solid electrolyte interphase/carbon interface by combined in situ Raman/Fourier transform infrared microscopy S. Pérez-Villar, P. Lanz, H. Schneider, P. Novák
    Electrochim. Acta 106, 506-515 (2013).
    DOI: 10.1016/j.electacta.2013.05.124OG-5410 , OG-5412
  • Chemical surface treatments for decreasing irreversible charge loss and preventing exfoliation of graphite in Li-ion batteries. P. Verma, T. Sasaki, and P. Novák
    Electrochimica Acta 82 (2012) 233.242
    DOI: 10.1016/j.electacta.2012.03.140OG-5410 , OG-5412
  • Formation of artificial solid electrolyte interphase by grafting for improving Li-ion intercalation and preventing exfoliation of graphite. P. Verma and P. Novák
    Carbon 50 (2012) 2599-2614
    DOI: 10.1016/j.carbon.2012.02.019OG-5410 , OG-5412
  • Reactions in the rechargeable lithium-O 2 battery with alkyl carbonate electrolytes. S. A. Freunberger, Y. Chen, Z. Peng, J. M. Griffin, L. J. Hardwick, F. Bardé, P. Novák, and P. G. Bruce
    Journal of the American Chemical Society 133 (2011) 8040-8047
    DOI: 10.1021/ja2021747OG-5410 , OG-5412
  • A novel combinative Raman and SEM mapping method for the detection of exfoliation of graphite in electrodes at very positive potentials. A. Hintennach and P. Novák
    Journal of Raman Spectroscopy 42 (2011) 1754-1760
    DOI: 10.1002/jrs.2930OG-5410 , OG-5412
  • Morphology of the solid electrolyte interphase on graphite in dependency on the formation current. W. Märkle, C. Y. Lu, and P. Novák
    Journal of the Electrochemical Society 158 (2011) A1478-A1482
    DOI: 10.1149/2.077112jesOG-5410 , OG-5412
  • Oxygen reactions in a non-aqueous Li + electrolyte. Z. Peng, SA. Freunberger, LJ. Hardwick, Y. Chen, V. Giordani, F. Bardé, P. Novák, D. Graham, JM. Tarascon, and PG. Bruce
    Angewandte Chemie - International Edition 50 (2011) 6351-6355
    DOI: 10.1002/anie.201100879OG-5410 , OG-5412
  • Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality. P. Verma, P. Maire, and P. Novák
    Electrochimica Acta 56 (2011) 3555-3561
    DOI: 10.1016/j.electacta.2010.11.055OG-5410 , OG-5412
  • A Review of the Features and Analyses of the Solid Electrolyte Interphase in Li-Ion Batteries. P. Verma, P. Maire, and P. Novák
    Electrochim. Acta 55, 6332-6341 (2010).
    DOI: 10.1016/j.electacta.2010.05.072OG-5410 , OG-5412