Financial support from BASF SE is gratefully acknowledged.

CE: Li metal.

Li

Detection limit for Li oxide/carbonate products in discharged cathodes

Method: limited to species

Conversion of Li oxide species to Li carbonate upon air exposure.

Changes at 2.0 V suggest depletion of solvated Li***.

New Li compounds form at 2.0 V even under Ar. CO₂ formation starts already at 3.6 V on GC and 4.1 V on Au-GC.

Conclusions & Outlook

DRIFTS:

- Li-O₂ cell: Li oxides form inside the cell and convert to Li₂CO₃ in minutes upon air exposure.
- Method: limited to species comprising ≥ 10 %wt of active material.

SRIFTS:

- Li-(Ar)O₂ cell: Li⁺ incorporated into new Li compounds at 2.0 V. even in Ar.
- Carboxylate salt/carbonate formation at 2.0 V: stronger in Ar than in O₂.
- CO₂ formation: onset already at 3.6 V on GC and 4.1 V on Au-GC.
- Further oxidative decomposition reactions: formation of water/hydroxides, CO₂, carboxyls, carboxylates/carbonates with onset potentials ≥ 3.3 V.
- Solid decomposition products: formation by carbonyl polymerization?
- Li metal anode: non-innocent?

Acknowledgements

- Financial support from BASF SE is gratefully acknowledged.
- The authors are also grateful to Hermann Kaiser and Christoph Junker for general technical assistance and for building and modifying cells and cell components.

References