Surface investigation of 30nm amorphous Si thin films cycled as negative electrode for Li-ion batteries

G. Ferraresi¹, L. Czornomaz², P. Novák¹, C. Villevieille¹, M. El Kazzi¹

1 - Paul Scherrer Institut, Electrochemistry Laboratory, CH-5232 Villigen PSI, Switzerland
2 - IBM Research-Zürich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland

giulio.ferraresi@psi.ch

Motivation
- Electrochemical and surface analysis (XPS) of 30nm amorphous phosphorus doped (n-type) Si thin films (used as model material)
- Understand the properties of the solid electrolyte interphase (SEI) growth and Li-Si alloy formation upon lithiation/delithiation

Electrochemical performances
- Model material: 30nm P-doped Si thin film on Cu (PECVD deposition)
- No binder, no conductive agent

Surface evolution

Post mortem XPS investigation

Post mortem XPS investigation

Conclusions
- High stability of Si thin films during cycling
- Specific charge retention up to 50% of the initial value after 500 cycles
- In-house XPS on Si 2p, C 1s, Li 1s and O 1s core levels to monitor SEI and Li-Si alloy
- SEI forms only at potential lower than 0.6V
- Elucidation of the SEI growth mechanism and Li-Si alloy formation during the early stages of cycling

Acknowledgements
- Financial support from CCEM/Swisselectric research initiative is gratefully acknowledged
- This work is a part of the CCEM-SiUB project

SEI and SiO₂ evolution
- Breathing effect of the SEI
- SiO₂ thickness reduced after the first discharge

Reaction mechanism
- Li²⁺ and SiO₂ → Li-Si and Li-silicate compounds
- SEI (organic/inorganic) formation at potential lower than 0.6V

Surface

Charge
- Charge A → No SEI formation, no reaction involving silicon
- Charge B-D → SEI growth, Li-silicate and Li-Si alloy formation

Discharge
- Discharge E-G → Reversible Li-Si de-alloying, SEI removal, partial Li-silicate dissolution

Charge
- Charge E → Li-Si delithiated to Si²⁺
- Irreversible lithiation mechanism for SiO₂
- Li-silicate thickness is reduced
- SEI decomposition and dissolution

Discharge
- Discharge F → Li extraction
- Li₂SiO₂

Li-Si reaction
- SiO₂ → Si²⁺
- Li²⁺ and SiO₂ → Li-Si and Li-silicate compounds
- SEI (organic/inorganic) formation at potential lower than 0.6V