

End User’s Guide to Multilinear Engine
Applications
Copyright Pentti Paatero, Feb. 27 2007.

File name for distribution: ME2_EndUsrGuid.pdf
Archive file name for this version: ME2EUG12.doc

Introduction
This guide is one of a set of three guides. The other two are “Multilinear Engine User’s
Guide” (MEUG) and the file me2scrip.txt. MEUG mainly concentrates on the mathematical
problem that is to be solved. Regarding practical details, MEUG is somewhat obsolete and
will soon be updated. On the other hand, me2scrip.txt gives a complete description of the
script language and the special variables that are used in order to specify the ME-2 run.
Together, these two files attempt to give a complete and thorough description of the program
ME-2, so that new applications can be developed based on these two documents. For this
reason, these two files are not suitable (being too long and too complicated) for somebody
who receives a ready-made script from colleagues. When using a ready-made script, one only
needs to update a few details in the script, such as file names, data dimensions, number of
factors, specifications of errors, output formats, and so on. The present guide has been written
in order to help the “End User” who receives a ready-made script from others. Thus this guide
does not discuss all details of the scripts. – This guide discusses the modeling task from the
viewpoint of environmental science. Some of the statistical conclusions may not be valid in
other applications.

The Multilinear Engine (ME-2) program is different than the programs PMF2 and PMF3.
Those two programs solve certain well-defined tasks. By modifying their .ini files, the user
can fine tune the action but the task is always the same, i.e. the solution of a certain bilinear or
trilinear problem. In contrast, the program ME-2 by itself does not do anything at all. The
actions of ME-2 are defined in a "script file", a special complicated .ini file that is written in a
special-purpose programming language, constructed specifically for the needs of ME-2. This
guide will discuss such properties of the script file that each user should understand.

This guide also discusses standard conventions that are adhered to in many different ME-2
scripts. In this way, the instructions supplied with individual scripts need not repeat the same
explanations. As an example, the notation XX indicates the (main) data matrix in all 2-way
data analysis scripts. The conventions are explained from the viewpoint of the basic (2-way)
factor analysis, where the data to be analyzed consist of a matrix of values, often enhanced by
some auxiliary data.

Although the program ME-2 itself has been written in the Fortran language, the users of ME-2
do not use Fortran at all. The user only works in the script language. The script language
loosely resembles the language of Matlab, and also the language Fortran. The script language
is documented in the file me2scrip.txt. The original ME publication (Paatero 1999) also
describes separate auxiliary Fortran programs, used for setting up the model description table
for the program ME-1. Those auxiliary programs are not needed any more. The program ME-
2 creates the needed tables itself, without needing auxiliary programs.

Installing and running ME-2
It is recommended that the distributed files me2wopt.exe, ME2libr.txt, me2key.key,
me2scrip.txt, and this file be copied to directory \me2 (or alternatively to \pmf). Data files or

script files should not be stored in this directory. Instead, they should be kept in problem-
specific directories in your directory tree. In this example, it is assumed that both the data and
the corresponding script files are in \mydata\test1. (It is possible to keep data and script files
in different directories but this guide does not cover such arrangements.)

The actual name of the executable file (.exe file) of ME-2 may be different from
“me2wopt.exe”. Sometimes, several different .exe files, with different file names, may be
available, to be used on different computer architectures. In this guide, the generic name
“me2wopt.exe” is used for representing all names of .exe files.

In order to run ME-2, first prepare the data file(s) and a script file named “myscript.ini”
in the directory \mydata\test1. Then open a “Dos window” or “Command prompt” window. In
this window, type the command “cd \mydata\test1” (do not type the quotes, they are
used here for clarity). Then start ME-2 by typing the command
 “\me2\me2wopt myscript”
or, if ME2 files have been stored in \pmf, type the command as
 “\pmf\me2wopt myscript”
Now ME-2 should start up, so that you may follow its operations in the Dos window. When
the run has finished, the result files will appear in the current directory, i.e. in \mydata\test1.

Working with the scripts
The scripts should not be viewed or edited with Word or Word-Perfect. A good programmer’s
editor, such as “Source Edit” by Joacim Andersson (free, at least so far) should be used.
Probably the best available editor might be Ultraedit-32. This program is not free but the price
is low in comparison to the quality. The program Notepad is better than Word but it has
several drawbacks. A new free program “Notepad2” is much better than the original
(Microsoft) Notepad. If using Notepad, be sure to save the files with the option “all files”, not
with “text files”. Also, be sure to set up your Windows system so that all file name extensions
are displayed. (This rule is also important for fighting viruses. If you do not know how to do
this, ask your computer-aware colleagues!)

The scripts and some document files, such as me2scrip.txt, have been formatted so that they
look good when using monospaced fonts, such as Courier New. Do not use proportionally
spaced fonts (e.g. Times Roman) when working with these files! Do not use tabulators (TAB)
in the scripts! Although the script might look good on your computer when TABs are used,
the script would not be portable any more. On a different computer, with different sets of
tabulators in use, the script would look terrible enough!

The first line of the script contains the name (including path) of the licence file that authorizes
the use of ME-2. The name of the licence file is usually either PMF2key.key or ME2key.key.
The path should be set up according to the directory tree of the user. The distributed script
files usually contain the path-and-file as: \me2\me2key.key . Change this according to
your situation!

Most ME-2 scripts import code segments from a standard library file. This is achieved by a
line such as
 $include $Xwrite2
and similar follow-up lines, usually near the end of the first script section “defines”. This line
indicates that routine Xwrite2 should be imported from the standard library file
(ME2libr.txt) residing in the same subdirectory as the .key file. If the library file resides
elsewhere in your computer, or if a different library file is used, then the complete form of the
$include command must be used, e.g.

 $include $Xwrite2 '\PMF\ME2libr.txt'
 $include $Mytrick '\ME2\Mylibr.txt'

 2

It may be a good idea to store all general ME2-related files (licence, library, .exe files, and
document files) in the subdirectory \me2. In this way, distributed scripts can be used with a
minimum of modifications.

The scripts contain a command such as
 version=1.204;
This command indicates that the script needs an ME-2 .exe file that is of version 1.204 or
higher. Or, that the author of the script believed that the script needs such an .exe version. If
the version of ME-2 in your computer is older, the script will not run. Then you should
download a newer version of me2wopt.exe from
ftp://rock.helsinki.fi/pub/misc/pmf/me2/
 (soon may be: ftp://rock.it.helsinki.fi/pub/misc/pmf/me2/)
or from the mirror site ftp://ftp.clarkson.edu/pub/hopkepk/pmf/.

If it is impossible to get a newer version of me2wopt.exe, try to change the version command
in the script. This may or may not work, depending on what new features the script needs.

The scripts contain user instructions and comments on lines that begin with the percent sign
“%”. Also, many command lines contain end-of-line comments that are separated by a “%”
character from the command proper. The comments are intended for the human user, the
program does not need them. Nevertheless, it is vital that the comments are kept up-to-date
when the script is modified. The user of the script should be able to trust the comments,
otherwise confusion will result. The distributed scripts are licenced to ME-2 users on the
following conditions:

The scripts may be modified and used in all licenced use of ME-2. No guarantee is given
for the correctness of the scripts, everybody uses the scripts at their own risk.
Unmodified scripts may be freely passed on to other ME-2 users. Modified scripts may
only be passed on under the following four conditions: (1) the modified script has a
different file name than the original one, (2) the original unmodified script is also passed
on together with the modified one, (3) the comments in the modified script have been
updated so that they do not contain obsolete or conflicting information about the script,
and (4) whoever modifies the script, inserts his/her name and the date of the last
modification in the script but otherwise does not change the author information and
modification history in the script.

Trivial changes, such as changing file names, data dimensions, number of factors, robust/non-
robust, etc should not be documented as modifications, and they do not require renaming the
script. If the script already contains modification information from a previous user, do not
delete such information. Add your own modification information after the previous one.—If
you detect an error in the script, please correct the error and also inform the author of the
script about the error and its correction!

Standard notation used in ME-2 scripts
Standardized notation is helpful in order that different scripts can be quickly understood and
modified. The following are the most important standardized notations:
n1 number of rows in data matrix, m
n2 number of columns in data matrix, n
np number of factors, P
XX the data matrix
30 file number for reading the data matrix XX. The file name for XX is
 specified in the command “openfile 30 ...”. This command is
 usually located near the beginning of the second section “equations”.

 3

c1 and/or c3 C1 and C3 coefficients, if/when one value applies for the entire matrix
 (these values will be copied to XX.C1 and XX.C3, either by the equ>
 commands or by explicit copying commands in the script)
XX.C1 the matrix of std-dev coefficients C1 (each data value has its own C1)
XX.C3 the matrix of std-dev coefficients C3 (each data value has its own C3)
XXC1 sometimes, the std-dev coefficients C1 are first stored in the matrix XXC1
 before being copied into XX.C1.
em The errormodel code. For environmental data, usually em=-14; is OK.
AA the left (time series) factor matrix, sometimes denoted by GG in ME-2,
 denoted by G in PMF2
BB the right (source composition) factor matrix, sometimes denoted by FF
 in ME-2, denoted by F in PMF
normc1 In up-to-data ME2 scripts, this value is not used because normalization
 is based on EM code -23 which maintains the C1 values automatically.
 In older scripts, normc1 is the std-dev coefficient for normalization
 equations, typically normc1=0.02;
aasmooc1 Std-dev coefficients C1 and C3 for equations that impose smoothness
aasmooc3 on columns of AA. Use smaller values if more smoothing is
 needed. Too much smoothing may distort the results, too little
 may cause that unrealistic wiggles appear in time series factors.
pullc1 Std-dev coefficient C1 for equations that pull some factor element(s)
 towards some user-specified target values. Use smaller values for more
 strong pulling. Observe how Q values increase with stronger pulling.
contrun A selector constant whose value ... chooses between
 ...0 random starts
 ...1 a start from previously computed results
 ...2 a start from specified initial values, while also specifying some
 special conditions, e.g. that some BB factor elements be kept
 fixed at their initial values
seed1 The initial value of a pseudorandom seed, used for generating random
 starting values of factors AA and BB. If a different random start is
 needed, then the seed1 value must be changed. If several random starts
 are computed in one run, then the script varies seed1 automatically
 so that the same result is not computed again and again.
 Other seeds (seed2, seed3,...) may be used for other purposes
 in more complicated scripts.

Commonly used control values in ME-2 scripts
When the script reads values (either data or control values) from files, it will also accept “null
values”. A null value is an “empty” place in a file, between two commas that are used to
delimit the values. Thus in the sequence “3, 4, , , , 5,”, there are three null values
between the values 4 and 5. The same sequence can also be expressed as
“3, 4, 3*, 5,” by using the repeat notation. See below for special features in input
files. When a null value is encountered in a file, then the variable in question will retain its
previous value. Despite its name, a “null” value does not mean the value of zero. Null values
are useful e.g. in situations where the previous value must be preserved but one does not
know the previous value when composing the file.

Dealing with missing data values
There are three main alternatives for dealing with missing values.
(1) The user may assign some typical values to such data where a true measurement is not

 4

available, and in addition assign large standard deviations for such data points. The standard
deviation should be at least equal to half of the difference between the largest and smallest
data value for the variable in question. This alternative should only be used if otherwise
unrealistic variation (peaks or drops) of factors occur at the locations of missing values.
(2) The data value may be set equal to an indicator value, such as –999, in order to indicate
that this is not a real data value. The indicator value must be chosen so much negative that no
real data can ever be so much negative. In addition, the control value missdatlim must be
set to a suitable threshold value, e.g. by setting “missdatlim=-990;”. In this way, the
program will not use the indicator value for fitting, even if an equation has been specified for
the data point.—This alternative is recommended if the number of missing values is small.
(3) The indicator values can be identified by the script when generating the equations. The
script may check each data value against some specified limit: if the value is more negative
than the limit, the corresponding equation is not created at all. This alternative is useful with
extremely large numbers of missing values because unneeded equations are not wasting
memory space. This alternative is only practical if the script already contains the required
coding for equation generation, see the script-specific instructions.

If the number of missing values is not large, then the indicator values may be inserted by
hand. However, some Excel spreadsheets contain large numbers of missing values, encoded
simply so that the cells have been left blank. In this case, manual insertion is not practical.
The following procedure is recommended:
(1) In Excel, create a comma-separated file (.csv file) that contains the data matrix. In order to
be able to see the .csv option, the list of Excel output formats has to be scrolled down from its
default position. In the .csv file, the empty cells appear as two consecutive commas. The
program ME-2 interprets two adjacent commas as representing one missing (i.e. “null”) value.
(2) Unfortunately, Excel does not always write a comma after the last cell on the row. Thus a
problem arises if the last cell is blank on any line. The simplest solution is to inspect the
spreadsheet and to manually insert the indicator values to all empty cells in the last
(rightmost) column before creating the .csv file.
(3) Before reading, the script must insert missing value indicators to all positions of the data
array, e.g. by the command “XX[0,0]=-999;”. This causes that the indicators will remain
in those positions of XX where no real data is input. The command for insertion of missing-
value-indicators may already be present in the distributed script but it is best to check the
situation.
(4) Sometimes, a TAB-separated file is available instead of a comma-separated one. The
instructions for reading a comma-separated file also apply for a TAB-separated file, with the
following addition: Use the command “tabiscomma=1;” in the script, in order that the
TAB be interpreted similarly as the comma.

Other control values
A group of control values occur in the scripts right after the initial comments, within the first
section “defines”. Some of the values have already been discussed. The following list
discusses some of the remaining variables in their order of occurrence in a typical script. The
user should be aware of all these controls and adjust them when needed.

monitor controls the amount of monitoring information written to file me2.log.
 The value of monitor does not have any influence on the computed
 results. Typically use monitor=5; to monitor=20;
 Note that the file me2.log is cumulative: most recent information is found
 at the end of the file.
robust Setting robust=1 selects robust mode of fitting, see (Paatero 1997).
 For most environmental data sets, robust mode is recommended.
 Setting robust=0 selects the non-robust mode where outliers are not

 5

 downweighted.
posoutdist=4; Limit for positive residuals: if the scaled residual exceeds 4,
 then the data point is considered an outlier and downweighted.
 (residual is the difference between measured and fitted values)
negoutdist=4; Limit for negative residuals: if the scaled residual is <-4,
 then the data point is downweighted.
 Depending on the distribution of residuals, smaller limits
 (e.g. 2) may also be used.
bdlneg=1; Used if Below Detection Limit (BDL) data values have been encoded
 so that the limit, with a minus sign, is entered into the data table.
 Then ME-2 will interpret all negative data values (except for missing
 data indicators) as indicating BDL limits and fit them accordingly.
precmode=15; This value can be left as it is.
numtasks=5; This indicates that 5 different random starts are to be
 computed. Because of the risk of arriving at a “local minimum”,
 one should not rely on one random start. To be quite sure, 20
 random starts should be computed. One of the computed results
 (usually the one with lowest Q) should be chosen for further
 computations, see next item numoldsol.
numoldsol This number is used when the results from a previous run are used as
 the starting point. Assume that the 3rd random start was chosen. Then
 numoldsol=3; indicates for the continuation run that the 3rd result
 is to be used.

Mathematical-statistical adjustments in multilinear models
Many mathematical adjustments are used for optimizing the solution process, i.e. the
algorithm. Those parameters will not have a significant influence on the numerical values of
the solution while they may significantly improve the efficiency of the computations. In
general, the end user does not need to be concerned with these parameters: the ready-made
scripts should contain reasonable values for these parameters.

Other mathematical parameters are of different character: they are part of the model that is
used for modeling the reality. The number of factors P is the most fundamental of these
parameters. Handling of these parameters cannot be automated. Choosing good values for
these parameters is an essential part of the professional skills of the analyst, even of the
required skills of the “End User”. Physical and chemical properties (known or assumed) of
the real-world situation must be taken into account. Also, statistical properties of the
measurements and of the physical situation must be considered. Even the purpose of the
model at hand influences the selection of parameters. As an example, the optimal number of
factors P may be smaller if the goal is to determine well the strongest sources of pollution at a
receptor site, and larger if a weak source, e.g. a distant smelter, is to be studied.

Judging the model by the obtained Q value
Sometimes, users of PMF models argue that a certain P is correct because it leads to a Q that
is close to the theoretically predicted Q value. Such reasoning is often false because the
obtained Q values depend strongly on assumed standard deviations of data values. Both
measurement errors and modeling errors contribute to residuals and hence to Q values. Even
if measurement errors can be reliably estimated (usually not the case!), modeling errors
remain largely unknown. Thus the usual situation is that standard deviations of measured
values are specified for PMF models on the basis of obtained Q values.

 6

The differences of Q, as obtained from different variants of a model, are often a main
indicator for preferring one of the variants. When the number of factors P is increased by
one, then the number of free parameters in the model increases approximately by (n+m).
Increase of the number of free parameters corresponds to a similar (non-significant) decrease
of the Q value. In order that the increase of P by one should be deemed useful, the decrease of
Q should be “significantly” more than (n+m). More specific criteria cannot be given because
the statistical properties (distributions and covariances) of residuals are largely unknown for
environmental data.

Using the FPEAK rotational option
Mathematical formulation of FPEAK rotations has been developed in January 2007. For
details, see Paatero (2007, to be submitted). This formulation will be used in EPA PMF and
later in other ready-made scripts. As seen from the user’s side, there are three alternatives: (1)
FPEAK is not used, (2) FPEAK is used in its original PMF2-like form, and (3) an enhanced
FPEAK is used, so that individual rotational parameters are defined for all elementary
rotations.

In (2), the overall rotational parameter φ (similar to Fpeak in PMF2) is specified by the user.
Best values should be determined by trial-and-error, the order-of-magnitude range of φ may
be from -2 to 2. If no rotation is desired, then alternative (1) should be selected rather than (2)
with φ=0.

In (3), the user specifies a matrix “FPEAK” of dimensions P×P. The values of off-diagonal
elements FPEAKpq indicate how strongly column p of G is to be added to (if FPEAK pq >0) or
subtracted from (if FPEAK pq <0) column q of G. (The diagonal elements should be =0.)
Regarding rows of F, the transformation follows the rules of rotations: row q of F is
subtracted from row p of F if FPEAK pq >0 and added to row p of F if FPEAK pq <0.

With FPEAK rotational forcing, the outcome may not always be as expected, however. Non-
negativity constraints may couple rotations with each other: in order that a certain rotation
may be possible, another rotation (or rotations) may also need to happen. Setting an element
of FPEAK to zero does not prevent the corresponding rotation from occurring. The zeros in
FPEAK only mean that the corresponding rotation, should it happen, is neither rewarded by a
decrease of Q aux nor penalized by an increase of Q aux.

Auxiliary equations, rotations, and pulling of factor elements
A more detailed discussion of these topics is available as the manuscript Paatero (2007, to be
submitted).

In programs PMF2 and ME-2, the object function Q consists of two parts: Q = Q main
 + Q aux.

The first part Q main consists of residuals of data fitting equations. When judging a model, one
should mainly look at this first part. The second part consists of auxiliary equations, such as
equations that normalize G factors to average=1. There are no set rules for the expected or
allowed size of Q aux. In “pure” 2-way PMF models, normalizing equations do not contribute
anything to Q aux. If there are pulling equations or FPEAK rotations, then normalization
equations may contribute up to some hundreds of units to Q aux. If there is a normalization
conflict or excessively strong pulling in the model, then normalization might contribute
thousands. If this occurs, the reason should be examined and the situation corrected. Pulling
equations may contribute varying amounts, depending on how the equations are set up.
Smaller or larger values of pulling Q aux should not be taken as a signal of success or failure.

Sometimes, available a priori information tells us that in a certain source, the true
concentration of a certain chemical element should be zero or should have a known value.
Then it makes sense to impose this known value on the model. In PMF2 and in ME-2, it is
easy to force chosen factor elements to zero. In ME-2, it is also possible to fix chosen factor

 7

elements to non-zero values. Such forcing of the solution causes an increase of the value of
Q main. Then one must decide if the increase is acceptable or if it is too large. And again, there
is no solid answer because the statistical properties of errors and hence of residuals are not
known well enough. For a larger data set, the increase can probably be larger than for a
smaller data set. If the data set is known to contain problems (e.g. incompatible instruments,
or variation of true source profiles with time, say) then a larger increase of Q may be
acceptable. As a simple rule of thumb, increases of hundreds may be acceptable while
thousands appear questionable.

Instead of fixing factor elements to chosen values, it is often safer to use “softer” means, viz.
“pulling” factor elements up or down. Denote by f a factor element that is to be pulled
towards a value (“anchor”) a. The pulling equation introduces into Q aux the contribution
(f-a)2/s2, where s is the “softness” of the pull. The smaller the value of s, the larger the
introduced Q aux and the stronger the pull. When the program minimizes the overall Q, it will
accept an increase of Q main if a larger decrease of Q aux is achieved in return.

Detailed discussion of pulling equations is in (Paatero 2007). The formalism for pulling
equations in ME-2 is such that the left-hand side must always be a constant value (not a
variable factor element). It follows that if the purpose of the equation is to make the two
factor elements fpj and fpk equal, then the natural form fpj = fpk cannot be used. Instead, the
equation must be formulated as 0 = fpj – fpk.

Pulling is often used when one wishes to see if a certain assumption is compatible with
measured data. Then one wishes to limit the increase of Q main small enough so that the
pulled (distorted) model can be considered acceptable whenever Q main is not larger than the
preset limit. Again, there is a problem in setting the limits for increase of Q main. Statistical
reasoning does not tell us the limits. Increase of 10 is certainly acceptable for one pulling
equation, while thousands are certainly doubtful. Increases of hundreds are probably
acceptable when several pulling equations are used. Experience regarding successful and
unsuccessful use of pulling should be published!

In ME-2 version 1.203 (Feb. 2007) an automatic mechanism for pulling has been introduced.
The user of this mechanism defines, for each pulling equation, an upper limit for the increase
of Q main that may be caused by the equation in question. This limit is theoretically justified
but conservative: in practice (=almost always), the increase of Q main will be at most 50% of
the specified limit, and usually between 15% and 50% of the limit whenever the system uses
maximal pulling. If maximal pulling is not needed, then the increase will be even less. When
using the system, one may request “maximal pull” up (or down): the pulled quantity will
obtain the largest (or smallest) value that is compatible with the chosen Q limit. Alternatively,
one may request a pull towards a specified target value. If this target value is compatible with
the limit, then the pulled quantity will approximate the target value. If the target is too far to
be accessible, then the result of targeted pulling is identical with the result of maximal
pulling.

When using the automatic pulling equations, the following quantities are needed:

dQ for each equation. These values will typically range from 10 to 100 per equation.
Different equations may have different dQ values. The larger values should only be
considered when only a few pulling equations are needed.

Expected change (absolute value of change) f expected_step >0 for the pulled quantity, or the
target value f target of the pulled quantity. The target value must not be the same as f init.
When pulling down with the intention to reach zero if possible, the expected step or
target value may be set to a “reasonable” negative value, e.g. to 0.1 pjp

f− ∑ when

pulling down a value fqj. In this way, the equation will not fail even if the specified
initial value happens to be zero already.

The user must decide about these values, dQ and the target or expected value.

 8

Even when a ready-made script is used, the End User must decide what values to use for the
limit dQ of allowed Q main growth. After the fit has been computed, one may check the size of
the actual increase. This size may be much smaller than the theoretical limit, the sum of
specified limits for individual equations. If the actual growth was small, then it may be
meaningful to redo the computations with higher limits, if it appears that desired results can
be obtained in that way. If it is important to achieve a maximal pull so that the allowed
increase of Q is maximally used, then it may be advisable to arrange the pulling computations
in two stages: in the first stage, apply only a fraction of the intended dQ. Then perform a
second computation, starting from the results of the first one. In the second computation, use
the remaining amount of intended dQ.

Pulling individual factor elements up and down can be used for error estimation. This method
accounts both for random (noise-induced) errors and for rotational ambiguity. On the other
hand, this method is dependent on correct error estimates of data values. If too small std-dev
have been specified for data values, then this method will compute too narrow error estimates
for the factors. This method has worked well with simulated data sets. So far, there is not
enough experience with real data sets. If testing this approach, one could begin by setting the
growth limit of Q main to 20 or to 40. Please report about your results if you try this approach.

Normalization
Normalization equations are a special case of pulling. All ME-2 scripts must contain some
form of normalization. In older scripts, normalization equations used EM code -12. In these
equations, a C1 or std-dev value had to be defined. In up-to-date scripts, normalization
equations use EM code -23. Then the program controls the C1 values dynamically, and the
control value normc1 is not used. Thus discussion about pros and cons of different values of
normc1 is obsolete and should be disregarded.

Other remarks
Occasionally, PMF2 users have included in their reports a statement saying that PMF2 cannot
accept negative values, or that PMF2 cannot accept zero values. Both of these statements are
based on misunderstandings, there is no truth in them. Small data values, even zero values and
negative values, should preferably be entered as such in the data matrix, both for PMF2 and
for ME-2 based models. There is absolutely no reason to convert small values to BDL
indicators. So doing will incur a bias in the results, and there is no reliable way to remove
such bias afterwards. The use of BDL indicators is well motivated when individual data
values are reported to non-scientists who do not understand what an error estimate means.
However, when a multivariate data set is analyzed by statistical methods, BDL indicators
serve no useful purpose at all. They are still often used, mainly because of a century-old
tradition; try to convince your laboratory that they should give you the uncensored values if
such values have been measured.

In ME-2, the use of errormodel codes (em) and std-dev coefficients (C1 and C3) is similar to
their use in PMF2. Regarding these details, please refer to PMF2 handbook for the time being.
In contrast to PMF2, ME-2 allows that different data values have different errormodel codes.

In the script language, a shorthand notation is used when dealing with matrices or vectors, as
follows: XX[0,0] means “all elements of matrix XX”. The elements are accessed in row-
wise order: first all elements of the first row, then of the second row, and so on. Similarly, the
notation XX[j1,0] means “all elements on row j1 of matrix XX”. Also, XX[0,j2] means
“all elements on column j2 of matrix XX”. These shorthand notations apply for all matrices
and vectors, not just matrix XX. These notations are often used when reading or writing
matrices.

 9

Modifying the contents and format of ME-2 files

Files read by ME-2
In practice, the data tables come in different formats. Often, the data form one table and the
error estimates (C1 coefficients) form another table. The two tables can be in one file, or in
two different files. Occasionally, the data and their errors have been merged in one single
table, so that odd-numbered columns contain the data values while the errors are in even-
numbered columns. It is not practical to distribute separate script files for dealing with all
such formats. Instead, the End User should be prepared to adjust read commands according to
the format of the data.

In the following examples, it is assumed that the main data file is file # 30, and a possible
secondary file is #31. In examples 1 to 4, both data and errors are read from file 30, where
they appear as two separate tables. Different alternatives are shown in order to illustrate the
flexibility of the script language. Example 5 reads data and errors from files 30 and 31,
respectively. (In order that file 31 can be used, a command “openfile 31, ...;” must
be inserted for opening it, cf. the file opening command for file 30.) Example 6 reads a table
where data and errors are in alternating columns. Example 7 shows how the data matrix can
be read when sample identifier words appear in the first column of the spreadsheet, i.e. as first
items on each line of file. The example stores these words in the text table AAHEAD.

(1)
 read 30, ‘ ‘, XX[0,0];
 read 30, ‘ ‘, XX.C1[0,0];
(2)
 read 30, ‘ ‘, XX[0,0], XX.C1[0,0];
(3)
 for> j1=1:1:n1;
 read 30, ‘ ‘, XX[j1,0];
 for!;
 for> j1=1:1:n1;
 read 30, ‘ ‘, XX.C1[j1,0];
 for!;

(4)
 for> j1=1:1:n1;
 for> j2=1:1:n2;
 read 30, ‘ ‘, XX[j1,j2];
 for!;
 for!;
 for> j1=1:1:n1;
 for> j2=1:1:n2;
 read 30, ‘ ‘, XX.C1[j1,j2];
 for!;
 for!;

(5)
 read 30, ‘ ‘, XX[0,0];
 read 31, ‘ ‘, XX.C1[0,0];

(6)
 for> j1=1:1:n1;
 for> j2=1:1:n2;
 read 30, ‘ ‘, XX[j1,j2], XX.C1[j1,j2];
 for!;
 for!;

(7)
 for> j1=1:1:n1;

 10

 read 30, ‘ ‘, AAHEAD[j1], XX[j1,0];
 for!;

Repeat notation, null values, and end-of-line comments in input files
Data and control files read by ME-2 may contain certain advanced features. These features
are similar to those defined for the “list-directed” input in Fortran 90 and newer Fortran
versions.

A repeat notation represents several occurrences of one numerical value in a shorthand
notation. The following file segment “15, 5, 3*2, 2*-1, 7” is equivalent to
“15, 5, 2, 2, 2, -1, -1, 7” . Repeat notations are particularly useful when
control matrices are to be filled with large numbers of repeated values. Repeat notation can be
extended over one or several rows of a matrix, or over one or several columns if the matrix is
read columnwise. It could even be extended over several matrices but that is not
recommended because of the risk of errors.

A “null value” is an empty place between two comma characters or between a newline and a
comma (not between a comma and end-of-line). When the reading process encounters a null
value in a file, then the value of the variable in question remains unchanged, i.e. retains its
previous value. A null value is also present in a repeat notation if the comma follows
immediately after the asterisk.

Data and control files can contain end-of-line comments. They begin with the character slash
“/”. After the slash, any text may occur on the same line. When reading, ME-2 ignores
completely the slash and the text after the slash. However, the slash must not follow
immediately after a numerical value. At least one space is needed between the value and the
slash. End-of-line comments have proven extremely useful in making control files more easy
to understand. Their use is strongly encouraged!

Files written by ME-2
Many scripts contain text tables named AAHEAD,BBHEAD, and FACTHEAD. These are
intended for meaningful annotation of factor matrices. There is in AAHEAD one word for each
row of the AA factor matrix, i.e. for each sample. If possible, try to arrange data input so that
sample headers are read into words of AAHEAD. Then they can be written together with the
numerical values. Similarly, chemical names of variables should be input into words of
BBHEAD, so that they can be written together with the source composition factor matrix BB.

When the run is started from random values, then factors appear in random order in factor
matrices. Hence, meaningful headers cannot be written for their columns (=factors). However,
when a run is to be started from a known previous result, then factors can be identified and
named. Those names can be entered into the table FACTHEAD so that they can be written as
column headers in tables of factors. Adjusting the writing commands requires that the user
acquires an understanding of how writing is arranged in the scripts. Some of the publicly
available scripts (e.g. the standard 2-way script) contain a small subroutine for writing the
headers of factor columns. This subroutine begins with the line
 subroutine> Fhead{fi}{};
near the end of the first script section. This subroutine needs to be fine tuned in order to
obtain a nice layout of results.

The order of magnitude of BB factor elements is quite variable. The scripts may contain
fixed-format specifications for BB writing, such as “(F8.4)”. The largest values that can be
written in this format are 999.9999 and –99.9999. (If larger values occur, they will be written
as “********”). On the other hand, the smallest non-zero value is 0.0001 (the digit 4 in the
format means that 4 decimal places will be written). If the values to be written exceed one of

 11

these limits, then the format has to be adjusted in order to accommodate the magnitudes of the
data. An example of a BB writing command is the following:

callsubr Fwrite2{40,'(30(1X,F8.5))', '(1X,A10)'}{BB,BBHEAD};

This command writes the BBHEAD texts on the left side of the BB table, and uses 5 decimal
places for the BB values. This command is near the end of the script, in section
“postproc”.

Using “formats” when writing to result files by ME-2
ME-2 uses format specifications in the same way as the Fortran language. If you have access
to Fortran textbooks, please refer to them for details. A short summary of formats is given in
the file “me2guid.pdf”.

When specifying formats, the following three conflicting aspects must be taken into account:
 1. Visual clarity: the exponential notation is not easy to read, although it can represent
 all values (large and small) with desired precision.
 2. Must be able to represent even the largest values. E.g. if three digits are available
 for representing ones, tens, and hundreds, then anything above 999 is too large
 for output and leads to the output of “*******” instead of the desired value.
 3. Must be able to represent even the smallest values with adequate precision.
 E.g. in aerosol science, concentrations of trace elements are often quite small,
 so that a precision of 0.0001, say, may not be sufficient for the source profile
 matrix.

Because of these aspects, ready-made scripts may not always have the best formats for every
use. Then one needs to modify the format. If you obtain the error indicator of “*****”,
then you might modify the number of decimal digits in the output. If the original format was
‘(1X, F8.5)’ you might try ‘(1X, F8.4)’, giving only four decimals in a field of
width 8, instead of five decimals. If you obtain the output of 0.0000 for a value that should
not be zero, try the opposite modification of the format, i.e. increase the number of decimal
digits. In both cases, it is also possible to adopt the exponential notation, such as ‘(1X,
G12.4)’or ‘(1X, E12.4)’. However, then the output field becomes wider which is
often not convenient (12 vs. 8 in this example).

References
Pentti Paatero, The Multilinear Engine - a Table-driven Least Squares Program for Solving
Multilinear Problems, Including the n-way Parallel Factor Analysis Model. Journal of
Computational and Graphical Statistics (1999), Vol 8, Number 4, 854-888.

Pentti Paatero, Least squares formulation of robust non-negative factor analysis,
Chemometrics and Intelligent Laboratory Systems 37 (1997) 23-35.

Pentti Paatero, Rotational tools for factor analytic models implemented by using the
Multilinear Engine (February 15, 2007) (To be submitted)

 12

	End User’s Guide to Multilinear Engine Applications
	Introduction
	Installing and running ME-2
	Working with the scripts
	Standard notation used in ME-2 scripts
	Commonly used control values in ME-2 scripts
	Dealing with missing data values
	Other control values

	Mathematical-statistical adjustments in multilinear models
	Judging the model by the obtained Q value
	Using the FPEAK rotational option
	Auxiliary equations, rotations, and pulling of factor elemen
	Normalization

	Other remarks
	Modifying the contents and format of ME-2 files
	Files read by ME-2
	Repeat notation, null values, and end-of-line comments in i

	Files written by ME-2
	Using “formats” when writing to result files by ME-2

	References

