Studies of Dipole Mode Signals in Accelerating Structures

Mike Seidel, SLAC

- Motivation, Principles . . .
- Application to S-Band Structures in the SLC
- Application to an X-Band Structure (ASSET experiment)
- Summary and Outlook

Motivation, Principles

• Transverse Wakefields in Accelerating Structures

drive particle off-center, deflection of test particle:

$$\theta_{\perp}(t) \propto W_{\perp}(t) \Delta x_d$$

 Δx_d : drive particle offset W_{\perp} : transverse wakefield

- wakefields dominate beam dynamics in linear accelerators
- \bullet structure scalings: high gradient \to short wavelength \to strong wakefields \to tight tolerances

$$W_{\perp}(z\ll a)\propto z\left(\frac{a}{\lambda}\right)^{-4}\lambda^{-4}\propto f^3$$

⇒ dipole-mode microwave-signals provide a direct measure for the beam offset in the frame of the structure

"ABSOLUTE" position measurement

Application to the SLC

- large scale linac, \approx 900 ten-foot S-Band structures
- observe emittance growth of \approx 30% in x, 100 200% in y while accelerating from 1.2 to 47 GeV
- Goal: ABSOLUTE beam position measurement in structures via dipole-modes without changing structures → simple access of signals

Signal Acquisition in the SLC

Layout of the SLAC Ten-Foot Structure

RF Power Distribution Scheme

Dipole Mode Spectrum

VSWR from Bench Measurements

Observed Beam-Excited Spectrum

Phase and Amplitude Detection

model:
$$U(t) = A(x - x_0)\cos(\omega t) + B\cos(\omega t + \Delta \phi)$$

= $\hat{U}(x)\sin(\omega t + \phi(x))$

linearize by computing: $\hat{U} \cdot \sin(\phi(x)) = A(x - x_0) + B\cos(\Delta\phi)$

⇒ resolution is good, however, out of phase component shifts measured center position (see also 9P.86)

Test of an X-Band Structure in the SLC

Damped Detuned Structure (DDS)

 X-Band (11.424 GHz), NLC prototype, 4 manifolds allow access of <u>all</u> dipole-modes (see also 5B.02, 3W.14, 5B.04)

Goals of the Experiment:

- study beam induced microwave signals
- infer wakefield directly by measuring the deflection of a trailing bunch
- combine both measurements to prove that wakefield is indeed minimal for minimal mode excitation

Processing Electronics for Microwave Signals

Possibilities:

- study mode structure in range 10-50 GHz
- measure spectrum vs. parallel beam offset (power scans)
- amplitude and phase detection

Beam Based Structure Straightness Measurement

Method:

- move beam in parallel transversely across the structure and measure spectrum at each step
- fit parabolas to each frequency slice and obtain the minimum power position as a function of frequency
- convert frequency scale into cell positions

Power as Function of Frequency and Beam Position

Conversion of Minimum Power Positions into Cell Positions (see also 3W.16)

qualitative picture - Brillouin curves for dipole modes

comparison with mechanical alignment measurement

Two Mode Beam Steering Using Phase and Amplitude Detection

⇒ use two modes, located at entrance and exit of structure, to align beam both in position and angle

example for amplitude and phase vs. beam position

Verification of Alignment with Witness Beam Deflection Measurement

Method:

- center drive beam (e^+) using the described methods
- ullet add witness beam (e^-) and measure its deflection
- sample wakefield curve such that beam-loading (long. wake) is suppressed
- fit sine-function to three points; convert amplitude into effective offset for drive beam

Effect of Internal Misalignments - Beating

Observation:

For small drive beam offsets we observe frequency/phase shifts in the wake function

different frequencies beat against each other

resulting wake-function for different beam positions

Results ...

Inferred wakefield frequencies and drive beam offsets for several attempts at centering the drive beam.

 \Longrightarrow achieved alignment precision better than 40 μ m

Summary

Dipole-mode based beam steering is a promising technique to control transverse wakefields, especially in high frequency accelerators.

SLC S-Band:

- $12\,\mu\mathrm{m}$ <u>resolution</u> demonstrated in two powered structures
- <u>accuracy</u> suffers from interference effects; dedicated studies in sector 2 using signals from individual structures are planned

NLC X-Band (DDS):

- accuracy of < 40 μm achieved in an unpowered structure; limited by internal misalignments
- DDS design demonstrates: dedicated HOM couplers are important; access to all modes via manifolds is helpful; allows in situ straightness measurement of structure

C.Adolphsen, R.Assmann, K.Bane, R.Jones, N.Kroll, R.Miller, C.Nantista, R.Ruth, J.Wang, D.Whittum

Stanford Linear Accelerator Center (SLAC)