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Motivation, Principles

e Transverse Wakefields in Accelerating Structures

| | | | | | drive particle off-center,
deflection of test particle:
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e wakefields dominate beam dynamics in linear accel-
erators

e sStructure scalings:
high gradient — short wavelength — strong wake-
fields — tight tolerances
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— dipole-mode microwave-signals provide a direct mea-
sure for the beam offset in the frame of the structure

“ABSOLUTE"” position measurement



Application to the SLC
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e large scale linac, ~ 900 ten-foot S-Band structures

e Observe emittance growth of ~ 30% in z, 100 —
200% in y while accelerating from 1.2 to 47 GeV

e Goal: ABSOLUTE beam position measurement in
structures via dipole-modes without changing struc-
tures — simple access of signals



Signal Acquisition in the SLC

Layout of the SLAC Ten-Foot Structure

RF Power Distribution Scheme
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Dipole Mode Spectrum
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Phase and Amplitude Detection
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— resolution is good, however, out of phase component
shifts measured center position (see also 9P.86)
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Test of an X-Band Structure in the SLC

Damped Detuned Structure (DDS)

e X-Band (11.424 GHz), NLC prototype, 4 manifolds
allow access of all dipole-modes
(see also 5B.02, 3W.14, 5B.04)
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Goals of the Experiment:

e study beam induced microwave signals

e infer wakefield directly by measuring the deflection
of a trailing bunch

e combine both measurements to prove that wake-
field is indeed minimal for minimal mode excitation



Processing Electronics for Microwave Signals
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Possibilities:

e study mode structure in range 10-50 GHz

e measure spectrum vs. parallel beam offset (power
scans)

e amplitude and phase detection



Beam Based Structure Straightness
Measurement

Method:

e move beam in parallel transversely across the struc-
ture and measure spectrum at each step

e fit parabolas to each frequency slice and obtain the
minimum power position as a function of frequency

e convert frequency scale into cell positions

Power as Function of Frequency and Beam Position

8e-07

7e-07 |

6e-07 |

5e-07

4e-07

3e-07

2e-07

A— 7 2

7 £

7

{

72

=/

le-07

Vi

7

Z=%

=

W
/=

Vi

i

\S&\\

]
/
/,

i
Uy
i
7
0
i

]
i

{
i
il
il

power
(arb. units)

position / mm



Power Parametrization: P(v,,vy,) = A,%(’yk -

Minimum Power Position [microns]
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Conversion of Minimum Power Positions into
Cell Positions (see also 3W.16)

qualitative picture - Brillouin curves for dipole modes
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Two Mode Beam Steering Using Phase and
Amplitude Detection

— use two modes, located at entrance and exit of
structure, to align beam both in position and angle

example for amplitude and phase vs. beam position
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Verification of Alignment with Witness Beam

Deflection Measurement

Method:

e center drive beam (e™) using the described methods

Wt [V/pC/mm/m]

add witness beam (e~) and measure its deflection

sample wakefield curve such that beam-loading (long.
wake) is suppressed

fit sine-function to three points; convert amplitude
into effective offset for drive beam

100

Wt measured at large dive offsets o
expected long. wake (arb. units)

Timing of Witness Bunch for Alignment Measurements
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Effect of Internal Misalignments - Beating

Observation:
For small drive beam offsets we observe frequency/phase
shifts in the wake function

different frequencies beat against each other

low frequency high frequency
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Results . ..

Inferred wakefield frequencies and drive beam offsets for
several attempts at centering the drive beam.
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—= achieved alignment precision better than 40 ym



Summary

Dipole-mode based beam steering is a promising tech-
nique to control transverse wakefields, especially in high
frequency accelerators.

SLC S-Band:

e 12 um resolution demonstrated in two powered struc-
tures

e accuracy suffers from interference effects; dedicated
studies in sector 2 using signals from individual struc-
tures are planned

NLC X-Band (DDS):

e accuracy of < 40um achieved in an unpowered
structure; limited by internal misalignments

e DDS design demonstrates: dedicated HOM cou-
plers are important; access to all modes via mani-
folds is helpful; allows in situ straightness measurement

of structure
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