Background Issues in the new HERA Interaction Region

M.Seidel, DESY

January, 2004

- Overview on HERA Interaction Region
- p-Gas Background
- Synchrotron Radiation
- e-Gas Background
- Recommendations from HERA Experience

Goal-Parameters for the Upgraded HERA

	e-Beam	p-Beam
energy	$27.5\mathrm{GeV}$	$920{ m GeV}$
beam current	$58\mathrm{mA}$	$140\mathrm{mA}$
emittance	$22\mathrm{nm}$	$5\mu{ m m}/\gamma$
emittance ratio	0.18	1
beta function IP β_x^*	$0.63\mathrm{m}$	$2.45\mathrm{m}$
beta function IP β_y^*	$0.26\mathrm{m}$	$0.18\mathrm{m}$
beam size $\sigma_x \times \sigma_y$	$118\mu \mathrm{m} \times 32\mu \mathrm{m}$	$118 \mu \mathrm{m} \times 32 \mu \mathrm{m}$
tune shift/IP $\Delta \nu_{x,y}$	0.027, <mark>0.041</mark>	$0.0017, 4.6 \cdot 10^{-4}$
aperture	20σ	12σ
Luminosity	$7.00 \cdot 10^{31} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	

 \implies specific luminosity is raised by factor 2.8

Overview on new IR

Switching the Lepton Species by Quadrupole Shifting

Side View of H1 Detector

GO magnet in H1

ZEUS Detector

Bridge right Magnets open

Chamber Cross-Section

Septum Absorber - Beam View

SR Power: $P \approx 6 \text{ kW}$ Crit. Energy $E_c \approx 150 \text{ keV}$ principle:

Absorber Coating Under Work

idea: thin low Z layer over thick high Z layer problem: stability at brazing temperature

history of sandwich-layers tested

Three Chambers Behind Septum Absorber

Mirror Plate Magnet GM

p-Chamber in GM, Septum Magnet

Overview on Types of Backgrounds

we expected (and have evidence for) four types of backgound:

- Proton Halo Losses in low- β quads
 - critical when diffusion/emittance growth from beam-beam effects comes in
 - controlled by two stage collimation system; relative beam size and position
- Proton Gas Scattering
 - lepton-SR induced Pressure Rise!, HOM heating!
 - dominating effect!
- Synchrotron Radiation
 - masking of direct and indirect radiation
 - orbit-control \rightarrow bending in quadrupoles; direction of radiation

• Lepton Gas Scattering

- wide energy spectrum of scattered leptons
- momentum collimation

Proton Gas Scattering

- most sensitive within 20 m from the IP (Monte Carlo)
- verified with artificial pressure bumps (red)
- cross-section with gas species: $\sigma_I \propto A^{\frac{2}{3}}$

IR Pressure in typical Run

Simulated Pressure Distribution

Old and New Radiation Mask in H1

Temperatur GG Flange at H1

H1 Beam pipe temperature

Pressure Development 2002/03

Development of Drift Chamber Currents at H1

• B O

DP 04/01/2004 13.56.09

Synchrotron Radiation

- beam separation and quads produce synchrotron radiation (SR); small powers (10^{-8} of peak density) already problematic!
- orbit mis-steering:
 - wrong direction \rightarrow photo desorption; back scattering; heating
 - possibly much more power produced; higher critical energy
- orbit control via BPM's, beam based methods
- continuous quad aligment monitoring
- tails in particle beam problematic

Radiation from Quads is Wider!

phase space distribution of radiation from a thin slice of combined function magnet (γ^{-1} opening angle neglected):

$$\frac{dP}{dl}\left(x,x',y,y'\right) = \frac{C_0}{4\pi^2\varepsilon_x\varepsilon_y} \left\{ \left(\frac{1}{\rho} + Kx\right)^2 + K^2y^2 \right\} \exp\left(-\frac{\gamma_x x^2 + 2\alpha_x xx' + \beta_x x'^2}{2\varepsilon_x}\right) \exp(\dots)$$

step through the beamline and integrate projections of such distributions:

2D Simulation -Nominal and Distorted Orbit

Beam Based Alignment Two Methods

difference amplitude around the ring global optics errors!

specific problems at HERA:

- nominal offset in x not zero! (paper by G. Hoffstätter, F. Willeke)
- coupling in vertical plane
- IR quadrupoles are thick lenses
- advantage: lumidetector fixes IP angle

kompensation of kick by two correction coils calibration of coils! statistics of all monitors contributes

Stretched Wire Alignment System

- stretched gold-plated wire as reference line
- 100 MHz signal on the wire is detected in BPM-like monitors
- \bullet resolution better $1\,\mu{\rm m}$ possible; demonstrated at SLAC FFTB
- at HERA complications due to fixation of the wire end point on a magnet support structure

Effects from Electron beam Tails

particle beam tails generate tails in the radiation fan scraper measurements from HERA-e (A.Meseck, 2000)

Figure 4.8: Measured $(+,\times)$ and the calculated (line) beam loss rates versus scraper position, with the upgrade focusing scheme without beam-beam interaction.

Simulation of the SR Fan including beam tails

beam model distribution

resulting distribution of the fan at +3.5 m

Lepton Gas Scattering

- electrons scatter with residual gas molecules and lose energy; if this happens in the straight section upstream of the detector they get lost preferentially in the separation field
- wide energy range for scattered leptons $\sigma \propto 1/E$
- strong Z dependence for rest gas $\sigma \propto Z^2$
- sensitivity over long distance

comparison of old new HERA IR

Dispersion Function for Different Energies

problem: scattered particles lose energy; are bent stronger than nominal inside the detector; produce background

remedy: energy collimation; dispersive section

Simulation w/o Energy Collimation

only beam particles that hit detector pipe are plotted

particle energy as function of distance to IP, where the residual gas interaction occurs

(U. Kötz, ZEUS)

Recommendations from HERA Experience

- Synchrotron Radiation
 - careful simulation and prediction of fan locations required
 - error analysis of orbits and magnet positions
 - shielding of critical vacuum components (bellows, flanges)
 - HOM heating produces outgassing!
 - consider effect of **beam tails**; possibly scraping required
- Beam Gas Background
 - simulation of beam losses from gas scattering (energy loss)
 - consider momentum collimation
 - careful layout of vacuum system at critical locations
 - estimate and prediction of vacuum conditioning

