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Abstract

The Mu3e Experiment is searching for lepton flavour violating decay of muons, by firing

high rates of them against a stopping target inside a custom detector assembly, mea-

suring the resulting decay particles. To improve the accuracy of the particles’ paths’

reconstruction, by measuring the exact sensor positions, a camera alignment system has

been proposed.

This work explores the protocols associated with reading out CSI-2-based image sen-

sors and proposes an FPGA-based prototype implementation of a CSI-2 bridge system,

before weighing its applicability, considering said alignment systems requirements.

Kurzfassung

Das Mu3e-Experiment sucht nach einem Leptonen-Flavour-verletzenden Zerfall von My-

onen, indem es hohe Raten eben dieser auf ein Target innerhalb einer eigens konstru-

ierten Detektorvorrichtung schießt und die resultierenden Zerfallsteilchen misst. Um die

Genauigkeit der Teilchenbahnrekonstruktion zu verbessern, wurde ein kamerabasiertes

Ausrichtungssystem vorgestellt.

Diese Arbeit untersucht die Protokolle, die zum Auslesen von CSI-2-basierten Bildsen-

soren verwendet werden, und schlägt eine FPGA-basierte Prototyp-Implementierung

eines CSI-2-Bridge-Systems vor, und prüft dessen Anwendbarkeit unter Berücksichti-

gung der Anforderungen an das genannte Ausrichtungssystem.
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Acronyms

ARM Advanced RISC Machines (processor architecture)

ASIC application specific integrated circuit

BSM (physics) beyond the standard model

CCI camera control interface

CIL control and interface logic

CMOS complementary metal-oxide semiconductor

CRC cyclic redundancy check

CSI-2 camera serial interface 2

CSV comma separated values

DAQ data acquisition system

DDR double data rate

DI data identifier

DT data type

ECC error correction code

EMI electro magnetic interference

FEB front-end boards

FIFO first in first out

FPGA field programmable gate array

FSM finite state machine

GPU graphics processing unit

HS high speed

HV-MAPS High-Voltage Monolithic Active Pixel Sensors

I3C improved inter-integrated circuit

IP intellectual property

ISP image signal processor

I²C inter-integrated circuit

LED light emitting diode

LP low power



LPDT low power data transmission

LVDS low voltage differential signalling

MCU micro controller unit

MIDAS Maximum Integrated Data Acquisition System

MIPI mobile industry processor interface

MSB most significant bit

MuTRiG muon timing dissolver including gigabit-link

NMOS n-type metal-oxide semiconductor

PCB printed circuit board

PF packet footer

PHY physical layer (bit transfer layer implementation)

PLL phase locked loop

PSI Paul Scherrer Institute

RAW unprocessed image data

RGB colour representation (Red Green Blue)

SCL serial clock line

SDA serial data line

SDR single data rate

SPI serial peripheral interface

UART universal asynchronous receiver transmitter protocol

ULPS ultra low power state

VC virtual channel identifier

VHDL VHSIC hardware description language

WC Word Count

YUV colour representation (Y for luminance U & V for chrominance)
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1 Motivation

In an attempt to find evidence for new physics beyond the Standard Model of particle

physics, the Mu3e collaboration is currently prototyping a new pixel detector, featuring

bleeding edge technology. The nature of the experiment necessitates tight restrictions on

the material budget around the active area, while simultaneously requiring a high rate

of extremely precise measurements. The team is pushing the boundaries of HV-MAPS

detector technology with every generation of their MuPix[2] sensor, striving for higher

resolution and faster readout within the same 50µm formfactor. This development

in itself is an impressive feat, but conclusive data demands more accuracy. Employing

auxiliary systems, exploiting complementary data and improving the detection precision

in software, is squeezing the gap between the observable and its underlying reality.[6]

Relating to only a fraction of such a sub-system, this work – while not providing any

advances in the semiconductor, much less the physics domain – might seem insignificant,

but, in fact, explores the associated technologies and shall provide an informational basis

for (and serve as a precursor of-) the implementation of said sub-system.

1.1 The Mu3e Experiment

The Mu3e experiment is a physics experiment located at the Paul Scherrer Institute

in Switzerland. It is a collaborative effort of several research groups spanning different

institutes in Switzerland, England and Germany - namely the aforementioned Paul

Scherrer Institute, the University of Zurich, the University of Geneva, the ETH Zurich,

the University of Heidelberg, the Karlsruhe Institute of Technology, The University of

Liverpool, the University of Oxford, the University of Bristol, the University College

London and the University of Mainz. Mu3e’s stated goal is muon decay observation at

a high rate (up to 2 ∗ 109 muon decays per second), in search of a specific event that

violates the Standard Model of particle physics.[5]

1.1.1 Theoretical Background

Concretely, Mu3e is searching for the so called lepton flavour violating decay

µ+ → e+e−e+

In case of this observation, the standard model of particle physics would be violated

and would need to be mended. The characteristics setting Mu3e apart from previous

experiments searching for the same decay, is its rate of observable decays. The incidence

of a specific decay versus any other decay of the same particle is given by the branching

ratio

B(µ+ → e+e−e+) < 10−12

The Standard Model including massive neutrinos, that accounts for this decay, predicts

this ratio at around 10−54 while the SINDRUM experiment from 1988 [3] reports no
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such event in 10−12 measured decays. The goal of Mu3e is to restrain the upper bound

of the branching ratio to 10−16, thereby eliminating beyond Standard Model theories,

that predict a larger branching ratio. In case µ+ → e+e−e+ was detected, the experi-

ment would provide hard data refuting the standard model, instigating further research

into the phenomena causing this kind of decay. Mu3e would also give insight into the

resulting Leptons’ properties, informing new models and experiments.[6]

1.1.2 Experimental Setup

The setup is a tiered system of a muon accelerator, a purpose-built sensor assembly

operating in a strong magnetic field inside a controlled atmosphere, high speed custom

readout electronics and a compute cluster for data processing. In its current Phase,

Mu3e uses the πE5 beam line at PSI, which can produce up to 108 muons per second.

The muons are guided through a vacuum to a 3.2m long magnet providing a cylindrical

field measuring 1T (see figure 1.1). The sensor cage – supporting detector hardware

that is layered around the beam target – sits inside the 1m wide inner bore of the 31-ton

Solenoid. Inspired by the SINDRUM experiment, the stopping target is a hollow double

cone with 70 µm thick walls made of Mylar. Upon impact on this 19mm wide target,

the muons can decay into elementary particles, which in turn travel outwards, while

following a spiralling path determined by their momentum.[1][12]

Figure 1.1: Mu3e magnet. (Niklaus Berger 2020)

Measuring the particle paths with extremely high spacial and temporal resolution, is

crucial for identifying the particles and the decay, they originated from. Although the

particles travel at a high speed, they are prone to deflection caused by any compact

solid in their way. To reduce losses in usable data due to this unwanted scattering, the
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sensor assembly was designed for minimal obstruction of the particle initial scattering

vectors. This is achieved through the use of 50µm thin High-Voltage Monolithic Active

Pixel Sensors (HV-MAPS) [17] called MuPix, bonded to flexible printed circuits for

data readout. These so-called ”ladders” are arranged as four nested cylinders around

the stopping target, overlapping at the edges to cover any angle perpendicular to the

beam. Particles scattering from the target travel through the first two layers of MuPix

sensors, a layer of scintillating fibre (”sci-fi”) sensors and the last two MuPix layers for

a total of four spacial data points as well as a high precision temporal data point from

the sci-fi sensor per path. in case the particle trajectory curls back towards the beam,

two additional sensor segments were added on both sides of the active part. These

”recurl” modules have the same two outer pixel layers, but replace the inner part with

scintillating tile detectors. The relative positioning of all detector elements is visualised

in figure 1.2. The scintillating detectors are read out using silicon photomultipliers.

The entire assembly is contained in a dry helium atmosphere, the MuPix layers being

cooled by helium gas flowing through the mounting brackets, over the ladders (see figure

1.3).[1]

Figure 1.2: Mu3e detector layout. (Data Flow in the Mu3e DAQ, Marius Köppel 2022,

Fig. 1)

To accommodate the high rate of muon decay events inside the detector, every part of

the system is designed for maximum throughput across physical, electronic and digital

domains. At the detector output, the signals cross over into the digital domain, entering

the Data Aqusition System (DAQ)[12]: Custom ASICs (MuTRiG for the scintillators,

integrated readout electronics on MuPix) retrieve the hit data from the triggerless de-

tectors, labelling and relaying it via electrical low voltage differential signalling (LVDS)

link to the front-end boards (FEBs). The front-end boards are FPGA-based (field pro-

grammable gate array) to accommodate the high data rate of up to 56.4Gbit per second

(for the current stage I of the experiment) and resist the magnetic field. They sort and

package hit information, relaying it to the optical switching boards. Through the high

bandwidth optical link, the data leaves the magnet, heading for the event filter farm.
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Figure 1.3: Inner pixel layer assembly. (Technical Design of the Phase I Mu3e Experiment,

Arndt et. al. 2021, Fig. 7.6)

There, the data is distributed over several GPU-equipped PCs filtering out only the

relevant event data. The result is a stream of around 50-100MB per second of selected

events, that are stored for later analysis using the MIDAS Software[18](see figure 1.4).

Figure 1.4: Mu3e readout scheme. (Technical Design of the Phase I Mu3e Experiment,

Arndt et. al. 2021, Fig. 17.1)

1.2 Camera Alignment System

Measuring the exact timing and position of sensor hits is crucial for reconstructing the

particles’ exact paths, since they are used for inferring the particles’ physical momen-

tum and origin. Due to the material budget requirements of the sensor elements, the

MuPix chips are bonded onto a flexible printed circuit. Although the manufacturing

of these ladders has been refined multiple times, the exceptionally thin structures can
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easily deform. To remedy this, as well as thermal- and gravitational influences on the

sub-assemblies’ relative positions, multiple alignment strategies have been proposed.[19]

Track based alignment computes the best fit for a particle’s track using all four hits, to

calculate each deviation from this ”true” track. The Millepede-II algorithm[4] then

minimises the error accumulating all deviations, to obtain global alignment parameters

optimising the track fit. This method works well for offsets directed laterally or or-

thogonally to the sensor plane, but cannot easily account for misalignment of sensor

sub-assemblies, called the weak modes. These misalignments consistently allow good

track reconstruction, although the sensors are shifted (see Fig 1.5).[8]

As a means to tackling this problem the camera alignment system[19] was proposed.

Figure 1.5: Example of weak mode misalignment and track reconstruction at the inner-

and outer pixel layers. (Track Based Alignment for the Mu3e Detector, U. Hartenstein

2019, Fig. 5.7).

Instead of relying on the data from the sensors, this method uses LEDs mounted on

the sensor cage as well as on the sensor itself to track their relative positioning using

cameras. The mounting pattern of the LEDs and cameras allows each camera to cap-

ture two other camera positions (marked by two leds mounted on both sides of the

sensor sitting on a custom PCB), as well as LED-marked reference points on the sensor

assembly as well as the cage (see figure 1.6). The position of these references – relative

to the part it is attached to – is known and the distances between them can be extracted

from the image. Using this data, the positioning in 3D space of each marked part in

the assembly can be calculated using triangulation, allowing greater spacial accuracy

in the measurements. Bridging between the cameras and the Mu3e compute cluster

will be realised using custom made FPGAs, allowing for great flexibility in terms of

mechanical arrangement in the sensor assembly, as well as multiplexing the data lanes –

possibly even integrating the control link – for a large reduction in the system’s interface

fan-out.[7]

2 Technologies

The summaries of the respective technologies detailed below, shall provide a solid basis

for future revisions of the proposed CSI-2 bridge implementation. It highlights the
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Figure 1.6: Camera positioning in the sensor cage. (Technical Update on the Camera

Alignment System, Sophie Gagneur 2023

most relevant aspects of each Protocol, eventually presenting additional information if

deemed relevant or for completeness’ sake.

2.1 FPGAs

Field programmable gate arrays (FPGAs) are configurable integrated compute units,

which can be programmed to function as user defined hardware. They contain generic

hardware blocks that can be manipulated with gate-level precision. Combined, these

blocks may serve as combinatorial- and/or clocked circuits. These devices are crucial

for Mu3e, allowing exceptionally high throughput, as well as cost- and time efficient

configuration changes in the data acquisition system (DAQ) while serving as bridge

between the MuPix sensor modules and the processing plant, as well as consolidating

incoming data for the GPU cluster. Additionally FPGAs come in several ”hardened”

variations, protecting the circuits from external influences, for instance radiation, electro

magnetic interference or extreme temperatures. These properties make them heavily

sought-after for use in extreme conditions and high performance systems in general.[12]

For the camera alignment system, one or multiple FPGAs assume the role of a bridging

component, controlling the cameras’ image sensors and relaying their data output to

the DAQ, where it is stored for on- or offline analysis. The FPGA for the prototype

implementation presented here, is a Lattice Semiconductor MachXO3L DSI breakout

board. It was chosen for is close resemblance of the MachXO3LF – which is familiar to

the author – and its compatibility with high speed MIPI physical layers (in this case D-

PHY). The accessibility of these high speed components turned out to be an unexpected

but significant impediment of the project. Lattice advertises the MachXO3L DSI and

SMA versions of the same breakout board as having similar capabilities, in that the only

difference is which connector is populated. The fact that the two interfaces don’t share

the same internal capabilities, was not obvious. For this reason the custom adapter

card produced for the bridge setup was mended once, supplemented using jumper wires

and then revamped, to completely disregard the initial DSI connector. Consulting the

Lattice documentation to resolve such ambiguities, is laborious, in that it is distributed
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over several documents, most of which are neither included in the concerning FPGA’s

documentation package, nor indexed for the documentation search function on their

website. Often times the only way to find a document is searching in online forums

or clicking on the reference links in another part of the documentation. The Lattice

prototype board will be replaced by a custom Intel MAX10-based board connecting

directly to the cameras, potentially adding MIPI bifurcation, as well as the front-end

boards.

2.2 I²C

The I²C or Inter-Integrated Circuit standard (also IIC, I2C) was defined in 1982 by

Philips Semiconductors (now NXP Semiconductors). It is closely related to the se-

rial peripheral interface (SPI) and universal asynchronous receiver transmitter protocol

(UART) and describes a simple solution to allowing data transactions between two or

more devices using only two wires and a robust protocol.[10]

2.2.1 Hardware

The two wires are referred to as SCL and SDA, denoting the data and clock lane. Both

lanes are bidirectional buses and are required to reliably transmit serial data at 100

kbit/s for Standard-, 400 kbit/s for Fast-, 1 Mbit/s for Fast-mode Plus and 3.4 Mbit/s

for High-speed mode. A unidirectional 5 Mbit/s mode called Ultra Fast-mode is also

defined in later iterations of the standard. The binary signals may be represented by

different voltage levels, depending on the connected devices. This facilitates the usage

of NMOS and bipolar logic, opposed to only CMOS which runs on 3.3V direct current.

The signal wires are coupled to the supply voltage (VDD) of one of the devices using

a pull-up resistor. Since there is no active electronic component regulating the bus

voltages, all devices, transmitting to or receiving from the same I²C bus at the same

time, must use the same voltage to do so.[10]

Figure 2.1: Exemplary I²C architecture. (I2C-bus specification and user manual, NXP

Semiconductors 2021, Fig.3)
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2.2.2 Protocol

The following applies to all modes except Ultra-Fast mode, unless declared otherwise.

Any device connected to the bus can send or receive data, but only one can talk at a time.

The device initiating a transaction is called the controller and provides the clock- and

stop signals for this interaction. All devices have a unique address, which – if received

– prompts the respective device (called target) to listen for incoming commands. A

targeted device can act as transmitter to the bus, for example when a read command is

received. In this case the target sends data synchronized to the controllers’ clock signal.

The protocol can be classified as packet-switched.[10]

For the purpose of better understanding, a simplified standard operation of the bus

using one controller and one target is assumed and subsequently expanded on in the

next subsection.

The most essential Signals are the START- and STOP conditions, generated by the

controller to initiate or terminate a transaction. When all devices are in idle, the bus

lines are both tied to HIGH. To signal a new transaction, the controller pulls SDA

low, while holding SCL high for a specified hold time (depending on the configured bus

speed, tHD;STA shall be at least 4, 1.3 or 0.5 µs). Immediately after, the first clock cycle

and data bit shall be sent. To end a transaction the controller holds SCL high, while

transitioning SDA from LOW to HIGH. The setup time between pulling up SCL and

SDA is defined by tSU:STO, and, in the same vein tBUF requires a mandatory buffer time

between a STOP condition and the next START. Instead of STOP, a repeated START

can be sent by the controller to continue a command that spans multiple transactions

or address a different target, without deallocating the bus.[10]

Omitting sub protocols defined within in the payload, data is always transmitted Most

Significant Bit (MSB) first. All transactions consist of 8 bit sized bytes followed by

one bit that is reserved for acknowledging data reception (ACK is active low). The

specification does not limit the amount of 9-bit packages contained in one transaction.

Addressing can be realised using the first 7 bits of a transaction to identify a device

and the eighth bit (RW bit) to indicate whether the following byte shall be read from

or written to this device (LOW indicates WRITE, HIGH indicates READ). In case of

a read request by the controller, the roles of transmitter and receiver switch within the

same transaction. When a target device receives a transaction with its address and

the read flag set, it proceeds to write 8 bits of data – starting from its current device

memory pointer – to the data line. The controller therefore releases the data line and

continuously provides clock cycles, so the data provided by the target stays in sync. For

this reverse data packets, the controller becomes the one to send a LOW Acknowledge

bit for any successful transmissions or HIGH for unsuccessful ones (the latter can only

be detected by a well defined sub protocol or in case of violation of the I²C protocol).
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Figure 2.2: I²C transaction timing diagram. (I2C-bus specification and user manual,

NXP Semiconductors 2021, Fig.3)

2.2.3 Extended Functionality

The I²C protocol features a variety of optional extensions to facilitate a wide range of

configurations.

Since low complexity devices benefit a lot from being able to communicate with a larger

system, the protocol can be augmented to fit their abilities. Clock Stretching allows a

slower target device to hold the clock line low while processing the bit received on the

previous clock HIGH. The controller then has to wait for the target to release SCL,

before continuing its transmission. If at least one target device uses clock stretching,

all controllers on the same bus are required to support this functionality.

A similar technique is used in multi-controller environments, to synchronise clock signals

when multiple transactions have been initiated and compete for the data line. When

detecting a falling edge on the clock line, any controller trying to send data must count

down its clock LOW time and hold the respective line. Thereby, the controller using the

longest LOW time dictates the LOW period of SCL. On the other hand the controller

with the shortest HIGH time will be the first to pull the clock down and issue the HIGH

period length. In this synchronized state, all active controllers are able to reliably read

from and write to the data line. This is mandatory for the arbitration process i.e.

negotiating which controller is allowed to write to SDA.

Arbitration is realised as a passive process in each active controller. Adhering to the

synchronized clock signal, all controllers try to drive SDA. As soon as one controllers

internal data level differs from SDA while the clock is high, it must stop transmitting

immediately and – if applicable – switch to target mode. The cancelled transactions

shall be repeated after the next STOP signal.

Since the simultaneous activity of multiple controllers can still be prone to logical errors,

the START byte and Software Reset extensions are recommended. 10-bit addressing and

General Call addresses can also improve system performance, but will not be touched

on here.[10]

9



2.3 MIPI CSI-2

The Camera Serial Interface 2 (CSI-2) is a specification introduced by the Mobile In-

dustry Processor Interface (MIPI) alliance in 2005. It serves to standardise high speed

camera interfaces for wide ranging use cases in the embedded space, enabling controlling

a camera module and reading out its image data at high speeds. Therefore the protocol

is highly flexible as it can be implemented on different physical layers and allows the

usage of various pixel data formats to suit the use case perfectly. The physical layer

can be implemented as a low power high speed C-PHY or D-PHY link, as well as a

more sophisticated A-PHY for longer range transmission or a very low cost MIPI I3C

interface. These interconnects are not equally capable in terms of image size or bit

depth, so any implementation must maintain backwards compatibility. Additionally

the CSI-2 interface includes a separate I²C bus for image sensor configuration called

the Camera Control Interface (CCI). The I²C and D-PHY interfaces oppose each other

in data directionality: While pixel data is transmitted unidirectional from the image

sensor to the image processing unit, the camera control signals are issued by the latter.

The CCI data flow is bidirectional, since the target device can be read out. In this

case the target drives data to the bus, but the rolls of controller and target cannot be

reversed in a standard CSI-2 setup.[14]

Figure 2.3: CSI-2 Interface. (MIPI Alliance Specification for CSI-2, MIPI Alliance 2009,

Fig. 1)

2.3.1 CCI

The camera control interface builds on top of the standard I²C implementation running

at 400kHz and using a single controller, multi target architecture. The target device

shall support 7 bit addressing, 8- or 16 bit internal indexing and 8 bit data blocks.
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Register memory shall be byte-aligned, to allow sequential operations on multi-byte

registers that hold 16-, 32- or 64 bit values. Consecutive read- or write operations

can be combined into a single sequential transaction each. In this case the controller

starts at the first register address and does not terminate the transaction until all bytes

have been transferred. The target device shall increment its internal register pointer

accordingly and is required to buffer multi-byte registers as soon as the first byte is

addressed. This feature of the target device also allows for implicit addressing in read

operations, where the controller issues a read transaction without previously specifying

a internal address using a write statement. Otherwise, reading from a random location

on the target device starts with a write operation, writing 8 or 16 bits (depending on the

register index), thereby setting up the register pointer. This transaction looks like the

start of a write operation, but is prematurely interrupted by a repeated Start condition

to request an implicit read from the previously specified location.[14][10]

Figure 2.4: Exemplary single read from random location. (MIPI Alliance Specification

for CSI-2, MIPI Alliance 2009, Fig. 4)

2.3.2 D-PHY

MIPI D-PHY is a physical layer implementation compliant with CSI-2. It is built on

one clock lane and at least one data lanes, each of which use low voltage differential

signalling (LVDS) for better electro magnetic interference (EMI) resistance. The two

different operating modes defined on the data lanes – called high speed (HS) mode and

low power (LP) mode – use different transmission speeds and voltages. The high speed

mode is used to transmit large amounts of data in synch with the high frequency clock

lane and has a tight voltage swing between its logic levels. It transmits data using

double data rate (DDR), where the data lanes are sampled twice per clock cycle. Low

power signals are independent of the high speed clock and enable extended function-

ality (escape mode) via its slower, large swing signals. While the clock lane is always

unidirectional, therefore defining the forward direction, both HS and LP signals can

be implemented bidirectionally. To manage all possible configurations, a lane module

11



Prefix Lane

Interconnect

Side

High-Speed

Capabilities

Forward

Direction

Escape Mode

Features

Supported

Reverse

Direction

Escape Mode

Features

Supported

CIL- M - Master F - Forward Only A - All

(including

LPDT)

A - All

(including

LPDT)

S - Slave R - Reverse and

Forward

E - events -

Triggers and

ULPS Only

E - events -

Triggers and

ULPS Only

X - Don’t Care X - Don’t Care X - Don’t Care N - None

Y - Any (A, E or

A and E)

X - Don’t Care

C - Clock N - Not

Applicable

N - Not

Applicable

Table 2.1: D-PHY lane type descriptors. (MIPI Alliance Specification for D-PHY, MIPI

Alliance 2009, Table 1).

hardware component is needed for each end of any signal wire pair, implementing the

so called Control and Interface Logic (CIL). Any D-PHY lane configuration can be de-

noted using standardised descriptors (see table 2.1).[15]

CSI-2 uses CIL-MFEN and CIL-SFEN configurations for TX and RX side of its up to

four data lanes as well as CIL-MCNN and CIL-SCNN on the respective sides of its clock

lane. This means only unidirectional data transfers are allowed and functionality of the

(forward only) escape mode is reduced. In escape mode, the clock lane only supports

ultra low power state (ULPS – wherein both signal lines are low and the system is

idle until a wake-up signal is transmitted), while the data lanes can also transmit 8 bit

trigger codes via the low power signals (The meaning of these trigger codes shall be

defined by the protocol layer above D-PHY).

D-PHY lane modules interact using all 4 possible permutations of the two signal states

on each line. Since they are interpreted differently between LP and HS mode, 6 distinct

signals are defined.

The default mode of the lane module is the control mode, where both signal lines are

high. From there the transmitting lane module can request to enter high speed or escape

mode using low power signal sequences. The sequence Stop - HS-Rqst - Bridge (LP11 -
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State Code
Line Voltage Levels High-Speed Low-Power

Dp-Line Dn-Line Burst Mode Control

Mode

Escape

Mode

HS-0 HS Low HS High Differential-0 N/A N/A

HS-1 HS High HS Low Differential-1 N/A N/A

LP-00 LP Low LP Low N/A Bridge Space

LP-01 LP Low LP High N/A HS-Rqst Mark-0

LP-10 LP High LP Low N/A LP-Rqst Mark-1

LP-11 LP High LP High N/A stop N/A

Table 2.2: D-PHY lane state description (MIPI Alliance Specification for D-PHY, MIPI

Alliance 2009, Table 2).

LP01 - LP00) signals the receiving lane module to switch into HS receiver mode, before

the transmitting module starts sending HS data. High speed data is sent in multiples of

8 bit and surrounded by starting and ending sequences of HS signals. The former is used

to synchronise the receiving modules HS receiver, while the latter initiates the switch-

ing back to control mode on the RX side. If instead, the control mode is exited using

the LP11 - LP10 - LP00 - LP01 - LP00 sequence, the lane modules switch to Escape

mode. 8-bit command patterns define Escape mode functionality. The transmitter can

issue low power data transmission (LPDT), ultra low power state and send or clear user

defined trigger signals. LPDT enables sending 8-bit packets using differential signalling

that allows asynchronous pauses using LP00 and is terminated by LP11. If a data lane

is bidirectional, the sequence LP11 - LP10 - LP00 - LP10 - LP00 triggers turnaround

mode, where transmitter and receiver switch roles, while the clock lane always remains

in forward direction.[15]

2.3.3 Multi Lane Operation

CSI-2 multi-lane distribution and merging follows the round robin principle, where N

bytes from a transmission are buffered so that each of the N transmitters simultane-

ously start transmitting one byte each until the entire message is consumed. The end

of transaction signals may arrive asynchronously in case the message size can not be

divided by N. Lane distribution shall accommodate for disconnected lanes by skipping

them, allowing robust data transmission at the cost of throughput.[14]

2.3.4 Pixel Data Packets

The data packets passed to the physical layer follow a low level protocol, using labelled

payload data and defect detection measures, to allow reliable transmission and rapid

processing of the data. All packet transmissions must be separated by a period of low
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Figure 2.5: D-PHY data lane module operation flow diagram (MIPI Alliance Specification

for D-PHY Version 1.00.00, MIPI Alliance 2009, Fig. 24)

power state, which may be timed on the transmitter site, to allow for easier line- or

frame synchronisation on the receiver side.

The payload itself consists of multiple 8-bit data words containing YUV-, RGB-, RAW-

or user defined data. It is preceded by a packet header containing an 8-bit data identifier

(DI), a 16-bit size descriptor (word count WC) and an 8-bit error correction code (ECC),

ensuring the headers’ integrity. A 16-bit checksum covering the entire payload, called

the packet footer (PF), is trailing the data.

Short signalling package formats are also defined, only containing the data identifier,

16 bits of data and an 8-bit ECC. The short packet data field can be used to transmit

user defined data, as well as frame- or line- number for synchronisation packages. The

processing of any packet is guided by its data identifier, which consists of two bits for the

virtual channel identifier (VC) and 6 bits for the data type (DT). While the data type

only describes how to interpret the packages’ data field, the virtual channel identifier

can be used to send multiple data streams via the same PHY.[14][15]

3 Implementation

This chapter describes a prototype VHDL implementation of a CSI-2 bridge, submitted

with this document. The aim was to apply the knowledge gained from the previously

discussed protocol documentations and examine their real world pertinence. Due to
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Figure 2.6: Lane distribution across four data lanes. (MIPI Alliance Specification for

CSI-2, MIPI Alliance 2009, Fig. 24)

Figure 2.7: CSI-2 packet spacing. (MIPI Alliance Specification for CSI-2, MIPI Alliance

2009, Fig. 29)

time constraints, the development followed a rapid revision cycle, replacing entire com-

ponents on the fly instead of developing a rigorous specification for the bridge system

software first. The process followed the control dependencies, from issuing the initialisa-

tion sequence to receiving the first image data, testing each component before building

on top of it. This strategy entailed favouring full integration of the image data lanes and

camera start-up sequence, over developing an expansive feature set and a convenient

front end for the sensor control interface, all of which would be relevant for the final

camera alignment system.[19]

During of the implementation, two major reworks have been conducted. Initially an

I²C component [9] from the Lattice IP catalogue was used, which provided a register

based interface for connecting a micro controller (MCU). Following this approach, the

”CCI encoder” entity was envisioned to relay transactions between the front-end boards

(FEBs) and the Lattice component, which in term controlled the image sensor. While

studying the IMX219 initialisation sequence from the specification, the conclusion was

made that continuous transactions might be needed to send two bytes of data, address-

ing only the upper byte in 32 bit camera registers.[11] Since the Lattice component

obfuscated the inner workings of the I²C controller, requiring another logical transla-

tion layer to invoke the correct signalling modes, it was promptly replaced by a more

user-friendly implementation. This component was implemented by Scott Larson and
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Figure 2.8: Long packet structure. (MIPI Alliance Specification for CSI-2, MIPI Alliance

2009, Fig. 30)

published on the digikey forum in 2021. Since it had already been used in other projects

in the mu3e system, the code was reviewed and deemed fit. This meant that the CCI

component underwent a significant rewrite, adjusting to the new interface, now being

able to manipulate the I²C controllers behaviour more directly (although a multi-byte

transaction was never implemented, since single writes to the lower byte register ad-

dresses worked as well).[13][10]

The second component replacement was not a rewrite, rather replacing already written

code with a self-contained Lattice component[16]. The image data pipeline consisting

of a D-PHY lane management component, a D-PHY HS receiver and a clock synchro-

nisation module for a lane aligner have been deprecated due to time constraints. All of

these components lacked proper testing, some even missing features, therefore finishing

their integration in time was deemed unrealistic. The decision was confirmed, when

better understanding of the FPGA’s capabilities lead to the realisation, that at least

the HS receivers DDR interface must have been a Lattice IP component either way.

This stems from the fact, that DDR data must be sampled on the leading-, as well as

the trailing edge of the clock signal, while the expression

if (rising_edge(MIPI_Clock_in) or falling_edge(MIPI_Clock_in)) then

could not be synthesised. Another option apart from using Lattice’s implementation

relying on the FPGA’s DDR primitives, was to not use the dedicated MIPI ports and
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routing both LVDS signals from the differential clock pair to the DDR component, but

this would take even more time and probably break due to timing or singnal integrity

issues, additionally defying the purpose of using a MIPI D-PHY capable FPGA. The

Lattice component replacing the image pipeline contains a D-PHY HS receiver, data

alignment stages and a packet decoder, that transforms the incoming high speed se-

rial data and presents it at its slower clocked parallel interface. The error correction

implementation was salvaged and attached to the Lattice component. The resulting

prototype implementation of the entire CSI-2 bridge is detailed below.[9][16]

3.1 Architecture Overview

The proposed MIPI CSI-2 to parallel bridge is composed of 4 main components and

can be subdivided in two distinct data pipelines. Firstly the image data pipeline, which

consists of a PHY receiver and CSI-2 packet decoder, followed by an error correction

module. And secondly the control instruction pipeline, integrating the standard I²C
controller with the additional features of the CCI broker, allowing communication be-

tween the sensor module and a host system. In the image data pipeline, the data flow

is straight forward, from the sensor to the host. Its pupose is modifying the incoming

high speed PHY transactions into a slower clocked parallel image format. The ECC

component is used to check for transmission errors within the PHY transaction data.

The control instruction pipeline is not only buffering transaction data in both directions

using the FIFO queues, but also provides a library of human readable commands, that

can then be processed and sent to the sensor module via I²C. This also allows reading

out sensor data, if desired. The data flow directions as well as the main components

relations to each other are visualised in figure 3.1.[16]

3.2 CCI

At the heart of the proposed MIPI CSI-2 bridge lies a I²C control unit called the camera

control interface (CCI). It is responsible for initializing and relaying commands to the

camera module via a dedicated bus on the CSI-2 interface and providing a higher level

interface to issue said commands.

3.2.1 I²C Controller

The first step in developing a working CCI controller was to obtain an I²C controller

that can send commands to and read out data from the camera module, following its

internal protocol. Since I²C is a widely used Protocol, especially in embedded environ-

ments, VHDL source code for this component is readily available.

Originally an I²C controller from the Lattice intellectual property (IP) catalogue was

considered to work in tandem with a broker, that would format the requests accord-
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Figure 3.1: Block diagram of the proposed CSI-2 bridge.

ing to the target specification. The Lattice IP component is feature rich, and offers a

register based interface, that allows it to be controlled from a different clock domain.

Unfortunately the code is packaged in several different sub components, which leads to

a large amount of boiler plate code and makes tracing the control flow a convoluted

process.[9]

Another fitting VHDL implementation for an I²C controller has been published by Scott

Larson and undergone multiple revisions.[13] The feature set of this controller has been

reduced to avoid any overhead not contributing to the core functionality of the bus

system. Therefore any features serving multi controller bus systems (clock synchronisa-

tion, arbitration, START byte and software reset) were deprecated in favour of reduced

size on chip and better readability.

The latter option has been elected to be the starting point of this implementation. Com-

pared to the former, its reduced complexity is a benefit for the project, since it makes

the code much more readable – and arguably more maintainable – without diminishing

functionality in any way. This controller has been configured to use the 400kHz Fast

mode.

The I²C controller consists of two finite state machines (FSMs) and a piece of com-

binatorial logic: One FSM generates an internal- (data_clk) and a quarter of a cycle

delayed bus clock (scl_clk) from the user specified frequencies. It works together with

the combinatorial part to generate START or STOP signals and drive the clock and

data lanes according to the I²C protocol. The other FSM manages the interaction with

the user code using busy and error signals and feedig the transaction data from its

inputs to the signal generator mentioned above.[9]

As long as the enable port (ena) is low, the management controller is in its ready state
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and polls said register using the user supplied system clock. When ena changes to high,

the busy flag is asserted, signalling the controllers activity to the outside while latching

8 bits for the target address and the read/write flag (addr, rw), as well as 8 bits of data

to be sent (data_wr). After the first bit (MSB) of the address is loaded into the internal

SDA register sda_int and the bus clock is enabled in the start state, the command

state loops, to feed the remaining address bits to the signal generator. On the ninth

bit, the controller expects the target to pull the data line low to acknowledge successful

reception of its address and RW bit. Therefore the SDA line is released and the FSM

switches to slv ack1, probing SDA on the trailing edge of the internal clock (i.e. at the

peak of the bus clock) and signals ack_error if necessary. On the next leading edge,

SDA is freed or prepared with the fist bit of the data byte, depending on the RW bit.

The read state rd, again loops for 8 bits, latching the SDA values to data_rx (sampling

at the peak of scl_clock). On the ninth bit, the controller sends a NACK signal to

end the transaction, unless the user code holds ena, addr and rw as is, to issue another

read from the same address. In any case, after a read command, the FSM switches

to mstr ack. The write state wr on the other hand, just feeds each data_tx bit to

SDA and continues to slv ack2. mstr ack and slv ack2 effectively do the same thing:

if ena is HIGH, they release the busy flag to signal the user code readiness for receiving

new commands, compare the new command with the old one and either continue the

ongoing continuous one or initiate a new transaction via the start state. If ena is LOW,

both go to the stop state, that generates the respective signal and resets the machine

to ready.[9]

3.2.2 CCI Broker

The CCI broker is the top level component of the bridge system. It is fairly independent

from the image data processing unit (D-PHY receiver and ECC), passing through any

MIPI data unaltered. The main function of the broker is to operate the I²C controller,

communicate with the outside world using a FIFO stack as well as automated initial-

ization of the camera module and its continuous operation. The host interacts with

the FIFO interface to issue CCI commands as per the sensors specification. Eventual

read-data is then returned to a separate queue ready to be retrieved by the host. The

FIFO component was generated from the Lattice IP core catalogue and is treated as a

black box.[9]

The central part of this component is another state machine, operating on the local vari-

able instruction_ID. It reaches from 0 to 4 and only ticks up, when the I²C controller

sends a busy signal. This ensures, that any changes to the signals on the controller

are made while it (the controller) is occupied and therefore does not sample those in-

puts. Every write transaction is 32 bits long, read transactions are 40 bits long. the

initial 7 bits contain the camera modules’ address, followed by a read/write bit, a 16

bit internal register address of the camera and 8 bits of write- or 16 bits of read data.
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Figure 3.2: I²C controller state machine. (I²C controller documentation by Scott Larson

2021, Fig. 2, https://forum.digikey.com/t/i2c-master-vhdl/12797)

instruction_ID = 0 is the idle state, waiting for a timed internal pulse or an external

start signal. In state IID = 1 the address of the target, the RW bit and the first half of

the register address are defined and the i2c_ena flag is set to actuate the I²C controller.

The target address is hard coded to the cameras standard address (see section 3.2.3)

and the RW bit is always zero, to force direct addressing of the registers. From now on,

the broker polls the controllers’ i2c_busy flag for instruction_ID enumeration. As

soon as the first half of the register address has been sent, the broker advances to state

IID = 2 and the second half is written to i2c_data_wr. On the next i2c_busy signal,

the RW bit is overwritten and – depending on the operation – 8 bits of data are written

or read using the respective registers. In the last state IID = 4, the last 8 bits are read

from the bus and sent to the output FIFO, in case of a read operation. Additionally,

internal counters and flags may be manipulated here. The I²C controller is disabled

using the i2c_ena flag and the state machine is reset to IID = 0.

The broker’s core functionality has been expended upon using internal counters and

trigger signals to enable timed periods between instructions, and switching between the

FIFO queue and internal arrays for standardized instruction bursts.
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3.2.3 CCI Constants

A constants library was added to provide a list of available register addresses on the

IMX219 sensor module[11]. This list is not exhaustive, but enables initialisation and

basic configuration settings. Two Arrays of I²C commands are defined here: One for

initialising the sensor module and one for prompting the sensor to send the next frame.

The latter sequence could be used to set basic sensor settings dynamically, for example

to adjusting for changes in lighting. The sensor module’s target address is hard-coded

here, as well as read- and write prefixes. Combined with the numerous register addresses

and a hard-coded 8 bit value for each write operation, the transaction arrays are as-

sembled. The last transaction of the initialisation sequence writes to the MODE_SELECT

register, initiating image data streaming.[11]

Multiple settings of the sensor influence each other significantly, i.e. choosing a larger

image size requires a reduction of frames per second or an increase of the internal clock

frequency (if not already at the limit INCK = 27MHz). Changing The main clock

requires the user to also adjust the pixel- or data rates of the system, using the inter-

nal clock dividers and PLL settings or changing the binning or sub-sampling settings.

Reconfiguring the D-PHY link or the pixel data format can also be an option to accom-

modate a higher data rate. The relations between the different clock domains and data

rates are outlined in figure 3.3.

To better understand the initialization sequence of the camera module, listening in on

an actual start-up conversation between a Raspberry Pi model 3B and the Raspberry

Pi Camera module V2 was deemed a fitting approach. The data used, was captured

using an inexpensive USB logic analyser in combination with the Saleae logic suite,

version 1.2.40. The software is meant for high level digital signal analysis and works

well with the relatively slow I²C protocol implementation used with the raspberry pi

camera module. The transaction data was saved in CSV format, allowing easy editing.

It was verified using a Rohde & Schwarz RTO64 oscilloscope and cross-checked against

an existing IMX219-compatible library. The oscilloscope data was not used, since fig-

uring out which acquisition settings could capture more than 70 transactions in one

measurement was unjustifiably involved considering the data was the same. A cleaned

up version of the original Saleae logic data can be found in appendix A.[11]

3.2.4 Initialization Sequence

On power-up the broker component will automatically generate an internal reset signal

to initialise itself. This is necessary to start an automated set up sequence that pushes

the hard coded initialisation array to the FIFO stack. As soon as the FIFO is filled, the

broker switches to normal operation and detects the data waiting to be transmitted.

The stack is then processed one by one, adhering to the piping process described in

section 3.2.2, until the in_buff_empty signal from the fifo_in component switches to
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Figure 3.3: Clock system block diagram (Sony IMX219PQH5-C data sheet, Fig. 43)

HIGH. The flag setup_complete is set after sending the last transaction, allowing the

broker to switch into streaming mode, activating the frame prompt loop.

3.2.5 Frame Prompt

While the sensor module is streaming image data to the D-PHY receiver, the CCI is

responsible for switching basic image settings – i.e. analogue gain – on the fly. The

respective sequence of transactions is stored in the REPEAT_PER_FRAME_ARRAY and sent

each frame using an internal timer.[11]

3.3 D-PHY Reciever

The D-PHY receiver is integrated with a CSI-2 lane management module and a user

friendly front end, that splits the incoming CSI-2 serial data into a parallel stream.

The entire component (called MIPI_CSI2_Serial2Parallel_Bridge) has been obtained

from the Lattice IP catalogue. Its top level component is only available in Verilog,

while the sub-modules have been regenerated as VHDL source code using the Lattice

IP-Express tool[16]. The bridge component was modified to accommodate for two

PHY lanes, decode the incoming packages as RAW10, and provide an interface for

error detection in the header. The PHY implementation uses a deserialisation- and

two alignment stages to buffer the incoming packets into word- and lane aligned 8 bit

streams clocked at one fourth of the incoming data rate. If the sensor module drives the

PHY using a free running clock, the PLL (phase locked loop) sub-component generates
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the slower pixel clock, that drives the tiered buffer stages. Otherwise the user logic

must provide a continuous clock signal that matches the PHY speed, to keep the pixel

clock running in case the PHY switches to low power mode. The first stage is a double

data rate (DDR) receiver primitive, that converts 8-bit chunks from the fast clocked

data lane and distributes them as single data rate (SDR) data over 8 parallel lines.

The next two stages synchronise the 8 bit parallel data, aligning it to one 8-bit word

per each lane and then synchronising the lanes to each other, using the slower pixel

clock originating from the PLL. On detection of a PHY sync sequence on the first lane,

the first 32 bit block of every lane is captured to determine the data type and length

of the respective data packets. If the format matches the component’s internal setting

(specified on generation), the pixel data is unpacked and presented at the parallel output

pins. Using the pixel clock in combination with the frame valid (fv) and line valid (lv)

ports, the user logic can read the image data from the exposed interface (10-bit parallel

for RAW10).[16][14]

3.4 Error Detection

The error correction component implements the error correction code (ECC) generation

specified in [14] to detect and – if possible – recover bit flips in the packet header. This

code is also calculated on the transmitting side of the PHY and sent as the last eight

bits of the header for verification. To generate an ECC the leading 24 bits of the packet

header are mapped linearly to a space of 5 bits words, encoding them such that each

data bit is covered by any code bit having the same index as the ones of the data bit’s

index’ binary representation. This means, that any single bit flip in the 24 data bits

generates a unique pattern diverging from the mapping. This kind of ECC is called

Hamming code, honouring Richard W. Hamming, who developed the encoding strategy

in 1950. To avoid two bit flips causing the same pattern as a different single bit flip, an

additional parity bit is generated for the code word. The resulting 6-bit ECC can be

used to detect single bit errors and correct them reliably, as well as detect multiple bit

errors.[14]

The implementation uses the transformation matrices given in the CSI-2 documentation

to calculate the ECC. The difference between the original ECC and the one calculated by

the receiver is called syndrome and encodes the flipped bits’ positions. If the syndrome

can be matched to a 1-bit error syndrome, the corresponding bit can be flipped back

and the header error is mended. Otherwise multiple bit errors occurred and a indicator

flag is set.
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Figure 3.4: Hamming code generation matrix (MIPI CSI-2 specification Version 1.01.00

r0.04 2-Apr-2009, Table 5)

4 Conclusion and Outlook

The resources aggregated here provide a thorough introduction into the different proto-

cols at play in the camera alignment system. Any part essential for the core functionality

is examined, in some cases expanded upon, supporting refinements and extensions of the

bridge system’s features. This documentation in combination with the proposed bridge

implementation, serves as a strong foundation for future development of the camera

alignment system.

The implementation – although not perfect – provides a minimal working example of

both main signal paths between the camera sensor and the outside world. Repeated

testing cycles using the oscilloscope, showed promising results concerning the core func-

tionality of the system, even though no rigorous edge case testing has been conducted.

One such edge case, that is currently unaccounted for, would be the FIFO queues filling

up. Here, a smarter internal control system, combined with an improved error signalling

to the host, would be advisable. Maybe the errors could be integrated in the output

FIFO data stream, encumbering the decoding handling on the host, as a trade-off for

fewer directly connected data lanes (which might be more relevant, considering the spa-

cial restrictions in the sensor assembly).[1][12] Extending the CCI constant library and

extending the CCI state machine to allow multi-byte transactions are obvious improve-

ments, allowing more access to the image sensor’s inner mechanisms, although they are

technically not necessary for standard operation (writing basic parameters like reso-
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lution works already). The data flow between the input FIFO and the I²C controller

should allow tighter timing, but for the moment, the safer implementation was preferred

over a faster, more fragile one.

Since tight timing is of great concern for the larger system, and the CSI-2 standard is

widely adopted, looking into the capabilities of other sensors allowing for faster frame

rates using the same resolution might be interesting, in case online usage of the align-

ment system is desired.[11] For offline alignment, a higher resolution would make mea-

surements more precise. Both should only require the adaptation of the constants library

to represent the different register addresses. For more accurate positioning of the sensor

module, integrating the sensors carrier PCB into the LED PCB might result in better

system performance, while also opening up the option of using all 4 PHY lanes instead

of only 2, broken out by the Raspberry Pi module.[11] Combining CSI-2 image data

streams through an additional arbitrator board exploiting the virtual channel function-

ality might also reduce cable clutter. Unfortunately the Lattice image pipeline does not

support virtual channel functionality, although it discriminates data streams for their

data type, allowing quasi virtual channels by mixing one data type per sensor on the

same PHY.[14]

On the other end, the interface on the front end boards, as well as a means of transmit-

ting the image data to the compute cluster remain to be implemented. The development

of these two protocols alongside each other might be beneficial to their overall flexibil-

ity.[1]

Ultimately the presented implementation servers as a robust starting point for future

readout software, representing the precursor of much more that is to come.
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Appendix A

1 Packet ID,Time [s],Address ,Read/Write ,Reg_Addr ,Data ,ACK/NAK

2 0 ,1.700380125 ,0x10 ,Write ,0x0100 ,0x00 ,ACK

3 1 ,1.700781875 ,0x10 ,Write ,0x30EB ,0x0C ,ACK

4 2 ,1.701182916666667 ,0x10 ,Write ,0x30EB ,0x05 ,ACK

5 3 ,1.701583333333333 ,0x10 ,Write ,0x300A ,0xFF ,ACK

6 4 ,1.701984 ,0x10 ,Write ,0x300B ,0xFF ,ACK

7 5 ,1.702384291666667 ,0x10 ,Write ,0x30EB ,0x05 ,ACK

8 6 ,1.702784875 ,0x10 ,Write ,0x30EB ,0x09 ,ACK

9 7 ,1.703185625 ,0x10 ,Write ,0x0114 ,0x01 ,ACK

10 8 ,1.703585833333333 ,0x10 ,Write ,0x0128 ,0x00 ,ACK

11 9 ,1.703986166666667 ,0x10 ,Write ,0x012A ,0x18 ,ACK

12 10 ,1.704387125 ,0x10 ,Write ,0x012B ,0x00 ,ACK

13 11 ,1.704787458333333 ,0x10 ,Write ,0x0164 ,0x00 ,ACK

14 12 ,1.705189708333333 ,0x10 ,Write ,0x0165 ,0x00 ,ACK

15 13 ,1.705605541666667 ,0x10 ,Write ,0x0166 ,0x0C ,ACK

16 14 ,1.706005958333333 ,0x10 ,Write ,0x0167 ,0xCF ,ACK

17 15 ,1.706408 ,0x10 ,Write ,0x0168 ,0x00 ,ACK

18 16 ,1.706808916666667 ,0x10 ,Write ,0x0169 ,0x00 ,ACK

19 17 ,1.707209291666667 ,0x10 ,Write ,0x016A ,0x09 ,ACK

20 18 ,1.707610041666667 ,0x10 ,Write ,0x016B ,0x9F ,ACK

21 19 ,1.708010958333333 ,0x10 ,Write ,0x016C ,0x06 ,ACK

22 20 ,1.708411625 ,0x10 ,Write ,0x016D ,0x68 ,ACK

23 21 ,1.708811916666667 ,0x10 ,Write ,0x016E ,0x04 ,ACK

24 22 ,1.70921225 ,0x10 ,Write ,0x016F ,0xD0 ,ACK

25 23 ,1.709613375 ,0x10 ,Write ,0x0170 ,0x01 ,ACK

26 24 ,1.710013958333333 ,0x10 ,Write ,0x0171 ,0x01 ,ACK

27 25 ,1.710414541666667 ,0x10 ,Write ,0x0174 ,0x01 ,ACK

28 26 ,1.710815916666667 ,0x10 ,Write ,0x0175 ,0x01 ,ACK

29 27 ,1.711217291666667 ,0x10 ,Write ,0x0301 ,0x05 ,ACK

30 28 ,1.711621208333333 ,0x10 ,Write ,0x0303 ,0x01 ,ACK

31 29 ,1.712021541666667 ,0x10 ,Write ,0x0304 ,0x03 ,ACK

32 30 ,1.712421833333333 ,0x10 ,Write ,0x0305 ,0x03 ,ACK

33 31 ,1.7128225 ,0x10 ,Write ,0x0306 ,0x00 ,ACK

34 32 ,1.713222791666667 ,0x10 ,Write ,0x0307 ,0x39 ,ACK

35 33 ,1.713623541666667 ,0x10 ,Write ,0x030B ,0x01 ,ACK

36 34 ,1.714023875 ,0x10 ,Write ,0x030C ,0x00 ,ACK

37 35 ,1.714424416666667 ,0x10 ,Write ,0x030D ,0x72 ,ACK

38 36 ,1.714825666666667 ,0x10 ,Write ,0x0624 ,0x06 ,ACK

39 37 ,1.715227583333333 ,0x10 ,Write ,0x0625 ,0x68 ,ACK

40 38 ,1.715631083333333 ,0x10 ,Write ,0x0626 ,0x04 ,ACK

41 39 ,1.716034958333333 ,0x10 ,Write ,0x0627 ,0xD0 ,ACK

42 40 ,1.71644475 ,0x10 ,Write ,0x455E ,0x00 ,ACK

43 41 ,1.716848541666667 ,0x10 ,Write ,0x471E ,0x4B ,ACK

44 42 ,1.717249083333333 ,0x10 ,Write ,0x4767 ,0x0F ,ACK

45 43 ,1.717649416666667 ,0x10 ,Write ,0x4750 ,0x14 ,ACK

46 44 ,1.718051541666667 ,0x10 ,Write ,0x4540 ,0x00 ,ACK

47 45 ,1.71846275 ,0x10 ,Write ,0x47B4 ,0x14 ,ACK

48 46 ,1.7188665 ,0x10 ,Write ,0x4713 ,0x30 ,ACK

49 47 ,1.719268458333333 ,0x10 ,Write ,0x478B ,0x10 ,ACK

50 48 ,1.719673583333333 ,0x10 ,Write ,0x478F ,0x10 ,ACK

51 49 ,1.720077875 ,0x10 ,Write ,0x4793 ,0x10 ,ACK

52 50 ,1.72047825 ,0x10 ,Write ,0x4797 ,0x0E ,ACK

53 51 ,1.720880166666667 ,0x10 ,Write ,0x479B ,0x0E ,ACK

54 52 ,1.721280708333333 ,0x10 ,Write ,0x0162 ,0x0D ,ACK

55 53 ,1.721681625 ,0x10 ,Write ,0x0163 ,0x78 ,ACK

56 54 ,1.722085416666667 ,0x10 ,Write ,0x018C ,0x0A ,ACK

57 55 ,1.722486541666667 ,0x10 ,Write ,0x018D ,0x0A ,ACK

58 56 ,1.722888666666667 ,0x10 ,Write ,0x0309 ,0x0A ,ACK

59 57 ,1.7233045 ,0x10 ,Write ,0x0160 ,0x06E3 ,ACK

60 58 ,1.723798583333333 ,0x10 ,Write ,0x015A ,0x0034 ,ACK

61 59 ,1.724382041666667 ,0x10 ,Write ,0x0157 ,0x00 ,ACK

62 60 ,1.724786416666667 ,0x10 ,Write ,0x0158 ,0x0100 ,ACK

63 61 ,1.725280208333333 ,0x10 ,Write ,0x0172 ,0x03 ,ACK

64 62 ,1.725685458333333 ,0x10 ,Write ,0x0172 ,0x03 ,ACK
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65 63 ,1.726087666666667 ,0x10 ,Write ,0x0600 ,0x0000 ,ACK

66 64 ,1.726580291666667 ,0x10 ,Write ,0x0602 ,0x03FF ,ACK

67 65 ,1.727072541666667 ,0x10 ,Write ,0x0604 ,0x03FF ,ACK

68 66 ,1.727565416666667 ,0x10 ,Write ,0x0606 ,0x03FF ,ACK

69 67 ,1.728057208333333 ,0x10 ,Write ,0x0608 ,0x03FF ,ACK

70 68 ,1.728548791666667 ,0x10 ,Write ,0x0100 ,0x01 ,ACK

71 69 ,1.832301083333333 ,0x10 ,Write ,0x015A ,0x06DF ,ACK

72 70 ,1.865704958333333 ,0x10 ,Write ,0x0157 ,0xE0 ,ACK

73 71 ,6.768608333333333 ,0x10 ,Write ,0x0100 ,0x00 ,ACK

Listing 4.1: cleaned-up I²C start-up transaction data between a Raspberry

Pi 3B and the IMX219 sensor module
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Appendix B

1 --------------------------------------------------------------------------------

2 --

3 -- FileName: i2c_master.vhd

4 -- Dependencies: none

5 -- Design Software: Quartus II 64-bit Version 13.1 Build 162 SJ Full Version

6 --

7 -- HDL CODE IS PROVIDED "AS IS." DIGI -KEY EXPRESSLY DISCLAIMS ANY

8 -- WARRANTY OF ANY KIND , WHETHER EXPRESS OR IMPLIED , INCLUDING BUT NOT

9 -- LIMITED TO , THE IMPLIED WARRANTIES OF MERCHANTABILITY , FITNESS FOR A

10 -- PARTICULAR PURPOSE , OR NON -INFRINGEMENT. IN NO EVENT SHALL DIGI -KEY

11 -- BE LIABLE FOR ANY INCIDENTAL , SPECIAL , INDIRECT OR CONSEQUENTIAL

12 -- DAMAGES , LOST PROFITS OR LOST DATA , HARM TO YOUR EQUIPMENT , COST OF

13 -- PROCUREMENT OF SUBSTITUTE GOODS , TECHNOLOGY OR SERVICES , ANY CLAIMS

14 -- BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF),

15 -- ANY CLAIMS FOR INDEMNITY OR CONTRIBUTION , OR OTHER SIMILAR COSTS.

16 --

17 -- Version History

18 -- Version 1.0 11/01/2012 Scott Larson

19 -- Initial Public Release

20 -- Version 2.0 06/20/2014 Scott Larson

21 -- Added ability to interface with different slaves in the same transaction

22 -- Corrected ack_error bug where ack_error went ’Z’ instead of ’1’ on error

23 -- Corrected timing of when ack_error signal clears

24 -- Version 2.1 10/21/2014 Scott Larson

25 -- Replaced gated clock with clock enable

26 -- Adjusted timing of SCL during start and stop conditions

27 -- Version 2.2 02/05/2015 Scott Larson

28 -- Corrected small SDA glitch introduced in version 2.1

29 --

30 --------------------------------------------------------------------------------

31

32 LIBRARY ieee;

33 USE ieee.std_logic_1164.all;

34 USE ieee.std_logic_unsigned.all;

35

36

37 ENTITY i2c_master IS

38 GENERIC(

39 input_clk : INTEGER := 50 _000_000; --input clock speed from user logic in Hz

40 bus_clk : INTEGER := 400 _000); --speed the i2c bus (scl) will run at in

Hz

41 PORT(

42 clk : IN STD_LOGIC; --system clock

43 reset_n : IN STD_LOGIC; --active low reset

44 ena : IN STD_LOGIC; --latch in command

45 addr : IN STD_LOGIC_VECTOR (6 DOWNTO 0); --address of target slave

46 rw : IN STD_LOGIC; --’0’ is write , ’1’ is read

47 data_wr : IN STD_LOGIC_VECTOR (7 DOWNTO 0); --data to write to slave

48 busy : OUT STD_LOGIC; --indicates transaction in

progress

49 data_rd : OUT STD_LOGIC_VECTOR (7 DOWNTO 0); --data read from slave

50 ack_error : BUFFER STD_LOGIC; --flag if improper

acknowledge from slave

51 sda : INOUT STD_LOGIC; --serial data output of i2c

bus

52 scl : INOUT STD_LOGIC); --serial clock output of i2c

bus

53 END i2c_master;

54

55 ARCHITECTURE logic OF i2c_master IS

56 CONSTANT divider : INTEGER := (input_clk/bus_clk)/4; --number of clocks in

1/4 cycle of scl

57 TYPE machine IS(ready , start , command , slv_ack1 , wr, rd, slv_ack2 , mstr_ack ,

stop); --needed states
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58 SIGNAL state : machine; --state machine

59 SIGNAL data_clk : STD_LOGIC; --data clock for sda

60 SIGNAL data_clk_prev : STD_LOGIC; --data clock during

previous system clock

61 SIGNAL scl_clk : STD_LOGIC; --constantly running

internal scl

62 SIGNAL scl_ena : STD_LOGIC := ’0’; --enables internal scl

to output

63 SIGNAL sda_int : STD_LOGIC := ’1’; --internal sda

64 SIGNAL sda_ena_n : STD_LOGIC; --enables internal sda

to output

65 SIGNAL addr_rw : STD_LOGIC_VECTOR (7 DOWNTO 0); --latched in address and

read/write

66 SIGNAL data_tx : STD_LOGIC_VECTOR (7 DOWNTO 0); --latched in data to

write to slave

67 SIGNAL data_rx : STD_LOGIC_VECTOR (7 DOWNTO 0); --data received from

slave

68 SIGNAL bit_cnt : INTEGER RANGE 0 TO 7 := 7; --tracks bit number in

transaction

69 SIGNAL stretch : STD_LOGIC := ’0’; --identifies if slave is

stretching scl

70 BEGIN

71

72 --generate the timing for the bus clock (scl_clk) and the data clock (data_clk)

73 PROCESS(clk , reset_n)

74 VARIABLE count : INTEGER RANGE 0 TO divider *4; --timing for clock

generation

75 BEGIN

76 IF(reset_n = ’0’) THEN --reset asserted

77 stretch <= ’0’;

78 count := 0;

79 ELSIF(clk ’EVENT AND clk = ’1’) THEN

80 data_clk_prev <= data_clk; --store previous value of data clock

81 IF(count = divider *4-1) THEN --end of timing cycle

82 count := 0; --reset timer

83 ELSIF(stretch = ’0’) THEN --clock stretching from slave not

detected

84 count := count + 1; --continue clock generation timing

85 END IF;

86 CASE count IS

87 WHEN 0 TO divider -1 => --first 1/4 cycle of clocking

88 scl_clk <= ’0’;

89 data_clk <= ’0’;

90 WHEN divider TO divider *2-1 => --second 1/4 cycle of clocking

91 scl_clk <= ’0’;

92 data_clk <= ’1’;

93 WHEN divider *2 TO divider *3-1 => --third 1/4 cycle of clocking

94 scl_clk <= ’1’; --release scl

95 IF(scl = ’0’) THEN --detect if slave is stretching clock

96 stretch <= ’1’;

97 ELSE

98 stretch <= ’0’;

99 END IF;

100 data_clk <= ’1’;

101 WHEN OTHERS => --last 1/4 cycle of clocking

102 scl_clk <= ’1’;

103 data_clk <= ’0’;

104 END CASE;

105 END IF;

106 END PROCESS;

107

108 --state machine and writing to sda during scl low (data_clk rising edge)

109 PROCESS(clk , reset_n)

110 BEGIN

111 IF(reset_n = ’0’) THEN --reset asserted

112 state <= ready; --return to initial state

113 busy <= ’1’; --indicate not available
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114 scl_ena <= ’0’; --sets scl high impedance

115 sda_int <= ’1’; --sets sda high impedance

116 ack_error <= ’0’; --clear acknowledge error flag

117 bit_cnt <= 7; --restarts data bit counter

118 data_rd <= "00000000"; --clear data read port

119 ELSIF(clk ’EVENT AND clk = ’1’) THEN

120 IF(data_clk = ’1’ AND data_clk_prev = ’0’) THEN --data clock rising edge

121 CASE state IS

122 WHEN ready => --idle state

123 IF(ena = ’1’) THEN --transaction requested

124 busy <= ’1’; --flag busy

125 addr_rw <= addr & rw; --collect requested slave address

and command

126 data_tx <= data_wr; --collect requested data to write

127 state <= start; --go to start bit

128 ELSE --remain idle

129 busy <= ’0’; --unflag busy

130 state <= ready; --remain idle

131 END IF;

132 WHEN start => --start bit of transaction

133 busy <= ’1’; --resume busy if continuous mode

134 sda_int <= addr_rw(bit_cnt); --set first address bit to bus

135 state <= command; --go to command

136 WHEN command => --address and command byte of

transaction

137 IF(bit_cnt = 0) THEN --command transmit finished

138 sda_int <= ’1’; --release sda for slave acknowledge

139 bit_cnt <= 7; --reset bit counter for "byte"

states

140 state <= slv_ack1; --go to slave acknowledge (command)

141 ELSE --next clock cycle of command state

142 bit_cnt <= bit_cnt - 1; --keep track of transaction bits

143 sda_int <= addr_rw(bit_cnt -1); --write address/command bit to bus

144 state <= command; --continue with command

145 END IF;

146 WHEN slv_ack1 => --slave acknowledge bit (command)

147 IF(addr_rw (0) = ’0’) THEN --write command

148 sda_int <= data_tx(bit_cnt); --write first bit of data

149 state <= wr; --go to write byte

150 ELSE --read command

151 sda_int <= ’1’; --release sda from incoming data

152 state <= rd; --go to read byte

153 END IF;

154 WHEN wr => --write byte of transaction

155 busy <= ’1’; --resume busy if continuous mode

156 IF(bit_cnt = 0) THEN --write byte transmit finished

157 sda_int <= ’1’; --release sda for slave acknowledge

158 bit_cnt <= 7; --reset bit counter for "byte"

states

159 state <= slv_ack2; --go to slave acknowledge (write)

160 ELSE --next clock cycle of write state

161 bit_cnt <= bit_cnt - 1; --keep track of transaction bits

162 sda_int <= data_tx(bit_cnt -1); --write next bit to bus

163 state <= wr; --continue writing

164 END IF;

165 WHEN rd => --read byte of transaction

166 busy <= ’1’; --resume busy if continuous mode

167 IF(bit_cnt = 0) THEN --read byte receive finished

168 IF(ena = ’1’ AND addr_rw = addr & rw) THEN --continuing with

another read at same address

169 sda_int <= ’0’; --acknowledge the byte has been

received

170 ELSE --stopping or continuing with a

write

171 sda_int <= ’1’; --send a no-acknowledge (before stop

or repeated start)

172 END IF;
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173 bit_cnt <= 7; --reset bit counter for "byte"

states

174 data_rd <= data_rx; --output received data

175 state <= mstr_ack; --go to master acknowledge

176 ELSE --next clock cycle of read state

177 bit_cnt <= bit_cnt - 1; --keep track of transaction bits

178 state <= rd; --continue reading

179 END IF;

180 WHEN slv_ack2 => --slave acknowledge bit (write)

181 IF(ena = ’1’) THEN --continue transaction

182 busy <= ’0’; --continue is accepted

183 addr_rw <= addr & rw; --collect requested slave address

and command

184 data_tx <= data_wr; --collect requested data to write

185 IF(addr_rw = addr & rw) THEN --continue transaction with another

write

186 sda_int <= data_wr(bit_cnt); --write first bit of data

187 state <= wr; --go to write byte

188 ELSE --continue transaction with a read

or new slave

189 state <= start; --go to repeated start

190 END IF;

191 ELSE --complete transaction

192 state <= stop; --go to stop bit

193 END IF;

194 WHEN mstr_ack => --master acknowledge bit after a

read

195 IF(ena = ’1’) THEN --continue transaction

196 busy <= ’0’; --continue is accepted and data

received is available on bus

197 addr_rw <= addr & rw; --collect requested slave address

and command

198 data_tx <= data_wr; --collect requested data to write

199 IF(addr_rw = addr & rw) THEN --continue transaction with another

read

200 sda_int <= ’1’; --release sda from incoming data

201 state <= rd; --go to read byte

202 ELSE --continue transaction with a write

or new slave

203 state <= start; --repeated start

204 END IF;

205 ELSE --complete transaction

206 state <= stop; --go to stop bit

207 END IF;

208 WHEN stop => --stop bit of transaction

209 busy <= ’0’; --unflag busy

210 state <= ready; --go to idle state

211 END CASE;

212 ELSIF(data_clk = ’0’ AND data_clk_prev = ’1’) THEN --data clock falling

edge

213 CASE state IS

214 WHEN start =>

215 IF(scl_ena = ’0’) THEN --starting new transaction

216 scl_ena <= ’1’; --enable scl output

217 ack_error <= ’0’; --reset acknowledge error

output

218 END IF;

219 WHEN slv_ack1 => --receiving slave acknowledge

(command)

220 IF(sda /= ’0’ OR ack_error = ’1’) THEN --no-acknowledge or previous

no-acknowledge

221 ack_error <= ’1’; --set error output if no-

acknowledge

222 END IF;

223 WHEN rd => --receiving slave data

224 data_rx(bit_cnt) <= sda; --receive current slave data

bit
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225 WHEN slv_ack2 => --receiving slave acknowledge

(write)

226 IF(sda /= ’0’ OR ack_error = ’1’) THEN --no-acknowledge or previous

no-acknowledge

227 ack_error <= ’1’; --set error output if no-

acknowledge

228 END IF;

229 WHEN stop =>

230 scl_ena <= ’0’; --disable scl

231 WHEN OTHERS =>

232 NULL;

233 END CASE;

234 END IF;

235 END IF;

236 END PROCESS;

237

238 --set sda output

239 WITH state SELECT

240 sda_ena_n <= data_clk_prev WHEN start , --generate start condition

241 NOT data_clk_prev WHEN stop , --generate stop condition

242 sda_int WHEN OTHERS; --set to internal sda signal

243

244 --set scl and sda outputs

245 scl <= ’0’ WHEN (scl_ena = ’1’ AND scl_clk = ’0’) ELSE ’Z’;

246 sda <= ’0’ WHEN sda_ena_n = ’0’ ELSE ’Z’;

247

248 END logic;

Listing 4.2: i²C controller by Scott Larson.[13]

vii



1

2 ----------------------------------------------------------

3 -- CCI Interface for Raspberry Pi Cam V2 --

4 -- Philipp Freundlieb pfreundl@students.uni -mainz.de --

5 ----------------------------------------------------------

6

7 library ieee;

8 use ieee.std_logic_1164.all;

9 use ieee.numeric_std.all;

10 use work.CCI_constants.all;

11

12 ENTITY CCI is

13 port (

14 -- i_clk : in std_logic;

15 -- i_reset_n : in std_logic;

16 button1 : in std_logic;

17 enable : out std_logic := ’0’;

18

19 --I2C

20 SCL : inout std_logic;

21 SDA : inout std_logic;

22

23 --LED

24 R_LED : out std_logic;

25 G_LED : out std_logic;

26 B_LED : out std_logic;

27 led_bank : out std_logic_vector (3 downto 0);

28

29 --FIFOs

30 i_DATA : in std_logic_vector (31 downto 0);

31 o_DATA : out std_logic_vector (31 downto 0);

32 i_WR_ENA : in std_logic;

33 i_RD_ENA : in std_logic;

34 o_BUFF_EMPTY : out std_logic;

35 i_BUFF_FULL : out std_logic; -- flag signalling externally ,

that input FIFO is unavailable

36

37 -- MIPI PHY lanes

38 i_mipi_clk : in std_logic;

39 i_mipi_data_0 : in std_logic;

40 i_mipi_data_1 : in std_logic;

41

42 -- i_mipi_clk_n : in std_logic;

43 -- i_mipi_clk_p : in std_logic;

44 -- i_mipi_data_0_n : in std_logic;

45 -- i_mipi_data_0_p : in std_logic;

46 -- i_mipi_data_1_n : in std_logic;

47 -- i_mipi_data_1_p : in std_logic;

48

49 -- CSI2 bridge and ECC outputs

50 o_parallel_pixels : out std_logic_vector (9 downto 0) ; -- 10 bit wide

parallel pixel output

51 o_pixel_clock : out std_logic;

52 o_frame_valid : out std_logic;

53 o_line_valid : out std_logic;

54 o_packet_header : out std_logic_vector (23 downto 0) ; -- corrected csi2

packet header for easier data management at the front end

55 o_ecc_errors : out std_logic_vector (2 downto 0) -- error indicator

56 );

57

58 END ENTITY;

59

60 architecture CCI_behave of CCI is

61

62 signal osc : std_logic; -- onboard oscillator

63 signal reset_n : std_logic; -- internal reset

64 signal CLK : std_logic; -- main clock
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65

66 -- i2c

67 signal i2c_rw : std_logic;

68 signal i2c_ena : std_logic;

69 signal i2c_busy : std_logic;

70 signal i2c_busy_prev : std_logic;

71 signal i2c_addr : std_logic_vector (6 downto 0);

72 signal i2c_data_rd : std_logic_vector (7 downto 0);

73 signal i2c_data_wr : std_logic_vector (7 downto 0);

74

75 signal target_add : std_logic_vector (6 downto 0);

76 signal rw_bit : std_logic;

77 signal reg_add : std_logic_vector (15 downto 0);

78 signal data : std_logic_vector (7 downto 0);

79

80 -- internal state machine and latched control signals

81 signal instruction_ID : integer := 0;

82 signal frame_signal_index : integer range 0 to 6 := 0;

-- index for wich per frame signal shall be sent next

83 signal wait_counter : integer := 0; -- counter to

make CCI state machine wait (see constants for timing)

84 signal init_signal_index : integer := 1; --

85 signal init_counter : integer := 0; -- timer for

separating i2c instructions and setting up registers in between

86 signal button1_prev : std_logic;

87 signal pause_clock : std_logic := ’0’;

88 signal enable_wire : std_logic;

89 signal streaming : std_logic; -- indicates weather the

camera shall be sending images

90 signal setup_complete : std_logic := ’0’;

91

92 -- internal fifo wires

93 signal in_buff_empty : std_logic;

94 signal in_buff_full : std_logic;

95 signal in_buff_full_override: std_logic; -- easy way to avoid write

conflicts on fifo

96 signal in_buff_data : std_logic_vector (31 downto 0);

97

98 signal in_buff_wr_enable : std_logic;

99 signal read_in_buff : std_logic := ’0’;

100

101

102 -- latching registers (maybe not necessary , test timings for eventual

improvement)

103 signal queue_target_add : std_logic_vector (6 downto 0);

104 signal queue_rw_bit : std_logic;

105 signal queue_reg_add : std_logic_vector (15 downto 0);

106 signal queue_data : std_logic_vector (7 downto 0);

107

108 signal out_buff_empty : std_logic;

109 signal out_buff_full : std_logic; -- TODO: implement safeguard if

out buffer is overflowing or signal error

110 signal reg_add_out : std_logic_vector (15 downto 0);

111 signal out_buff_data : std_logic_vector (15 downto 0);

112 signal write_out_buff : std_logic := ’0’;

113

114 -- CSI2 bridge outputs

115 signal virtual_channel : std_logic_vector (1 downto 0);

116 signal data_type : std_logic_vector (5 downto 0);

117 signal word_count : std_logic_vector (15 downto 0);

118 signal error_code : std_logic_vector (7 downto 0);

119 -- signal frame_valid : std_logic;

120 -- signal line_valid : std_logic;

121 -- signal o_parallel_pixels : std_logic_vector (10 downto 0);

122

123

124 component OSCH

ix



125 port (

126 stdby : in std_logic := ’0’;

127 sedstdby : out std_logic;

128 osc : out std_logic

129 );

130 end component;

131

132 -- Verilog component from Lattice IP catalogue

133 component MIPI_CSI2_Serial2Parallel_Bridge

134 port (sensor_clk : in std_logic;

135 rstn : in std_logic;

136 DCK : in std_logic;

137 CH0 : in std_logic;

138 CH1 : in std_logic;

139 CH2 : in std_logic;

140 CH3 : in std_logic;

141 pixclk_adj : out std_logic;

142 pixdata : out std_logic_vector (9 downto 0);

143 fv : out std_logic;

144 lv : out std_logic;

145 vc : out std_logic_vector (1 downto 0);

146 dt : out std_logic_vector (5 downto 0);

147 wc : out std_logic_vector (15 downto 0);

148 ecc : out std_logic_vector (7 downto 0)

149 );

150 end component;

151

152 attribute NOM_FREQ : string;

153 attribute NOM_FREQ of e_osch : label is "24.18";

154

155 constant CLOCK_SPEED : integer := 24 _180_000;

156 constant ENABLE_HOLD : integer := CLOCK_SPEED /1000; --

wait 1ms between setting enable signal and starting i2c transactions

157 constant ENABLE_FADE : integer := CLOCK_SPEED /4_000; --

wait for transactions to finish before turning off enable signal

158 constant FRAME_TIME : integer := CLOCK_SPEED /60 + 1; --

wait 1/60th of a second to send the next frame call

159 constant BUS_SPEED : integer := 100 _000;

160 constant INIT_TIME : integer := 3500; --

time between concurrent i2c transactions

161

162 begin

163

164 B_LED <= i2c_busy; -- signal idle in blue

165 R_LED <= not(i2c_busy and i2c_rw); -- signal read in red

166 G_LED <= (not i2c_busy) or i2c_rw; -- signal write in green

167

168 led_bank (0) <= not SDA;

169 led_bank (1) <= not SCL;

170 led_bank (2) <= button1;

171 led_bank (3) <= not in_buff_empty;

172

173 i_BUFF_FULL <= in_buff_full_override;

174 o_BUFF_EMPTY <= out_buff_empty;

175

176 enable <= enable_wire;

177

178 e_osch: OSCH

179 port map

180 (stdby => open ,

181 osc => CLK); -- for TESTING using modelsim: change to osc

signal and setup clockdiv for probing CLK

182

183 mipi_to_parallel_lattice: component MIPI_CSI2_Serial2Parallel_Bridge

184 port map (

185 sensor_clk => open , -- sensor clock is not needed (D-PHY clock is

continuous)
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186 rstn => reset_n ,

187 DCK => i_mipi_clk ,

188 CH0 => i_mipi_data_0 ,

189 CH1 => i_mipi_data_1 ,

190 CH2 => open , -- not connected (RPI camera V2 only breaks out 2 D-PHY

data lanes)

191 CH3 => open , -- not connected (RPI camera V2 only breaks out 2 D-PHY

data lanes)

192 pixclk_adj => o_pixel_clock ,

193 pixdata => o_parallel_pixels ,

194 fv => o_frame_valid ,

195 lv => o_line_valid ,

196 vc => virtual_channel ,

197 dt => data_type ,

198 wc => word_count ,

199 ecc => error_code

200 );

201

202 reset_generator_1: entity work.rst_gen

203 port map

204 (CLK => CLK ,

205 reset => reset_n);

206

207 I2C_clock_div : entity work.clkdiv

208 port map

209 (o_clk => open , -- for TESTING: connect to CLK and double input

clock freq if CLK is probed on osc

210 i_reset_n => ’1’,

211 i_clk => osc);

212

213 i2c_master: entity work.i2c_master

214 generic map(

215 input_clk => CLOCK_SPEED , --input clock speed from user logic

in Hz

216 bus_clk => BUS_SPEED --speed the i2c bus (scl) will run at

in Hz

217 )

218

219 port map(

220 clk => CLK ,

221 reset_n => reset_n ,

222 ena => i2c_ena ,

223 addr => i2c_addr ,

224 rw => i2c_rw ,

225 data_wr => i2c_data_wr ,

226 busy => i2c_busy ,

227 data_rd => i2c_data_rd ,

228 ack_error => open ,

229 sda => SDA ,

230 scl => SCL

231 );

232

233 fifo_in: entity work.fifo

234 port map (

235 Data => in_buff_data , -- 31..25 target_add | 24 rw_bit | 23..8

reg_add_in | 7..0 data_in

236 WrClock => CLK ,

237 RdClock => CLK ,

238 WrEn => in_buff_wr_enable ,

239 RdEn => read_in_buff ,

240 Reset => not reset_n ,

241 RPReset => open ,

242 Q(31 downto 25) => queue_target_add ,

243 Q(24) => queue_rw_bit ,

244 Q(23 downto 8) => queue_reg_add ,

245 Q(7 downto 0) => queue_data ,

246 Empty => in_buff_empty ,

xi



247 Full => in_buff_full ,

248 AlmostEmpty => open ,

249 AlmostFull => open

250 );

251

252 fifo_out: entity work.fifo

253 port map (

254 Data (31 downto 16) => reg_add_out ,

255 Data (15 downto 0) => out_buff_data ,

256 WrClock => CLK ,

257 RdClock => CLK ,

258 WrEn => write_out_buff ,

259 RdEn => i_RD_ENA ,

260 Reset => not reset_n ,

261 RPReset => open ,

262 Q => o_DATA , -- 31..16 reg_add | 15..0 out_buff_data

263 Empty => out_buff_empty ,

264 Full => out_buff_full ,

265 AlmostEmpty => open ,

266 AlmostFull => open

267 );

268

269 ecc: entity work.ecc

270 port map(i_clk => CLK ,

271 i_reset_n => reset_n ,

272 ECC_in => error_code ,

273 VC_in => virtual_channel ,

274 DT_in => data_type ,

275 WC_in => word_count ,

276 corrected_error => o_ecc_errors (1),

277 higher_order_error => o_ecc_errors (2),

278 no_error => o_ecc_errors (0),

279 packet_header_out => o_packet_header

280 );

281

282

283 process(CLK , reset_n)

284 begin

285 if(reset_n = ’0’) then

286 i2c_ena <= ’0’;

287 i2c_rw <= ’1’;

288 i2c_busy_prev <= ’0’;

289 instruction_ID <= 0;

290 enable_wire <= ’0’;

291 read_in_buff <= ’0’;

292 write_out_buff <= ’0’;

293 init_signal_index <= 0;

294 setup_complete <= ’0’;

295 wait_counter <= 0;

296 init_counter <= 0;

297 frame_signal_index <= 0;

298 streaming <= ’0’;

299 out_buff_data <= b"0000000 _000000000";

300 -- ################################################################

301 elsif(rising_edge(CLK)) then

302 if (init_signal_index <= SETUP_TRANS_MAX_ID) then -- process

that fills fifo with setup array automatically

303 in_buff_full_override <= ’1’;

304 if (pause_clock = ’0’) then

305 in_buff_wr_enable <= ’0’;

306 pause_clock <= ’1’;

307 in_buff_data <= START_STREAM_ARRAY(init_signal_index);

308 elsif (pause_clock = ’1’) then

309 in_buff_wr_enable <= ’1’;

310 pause_clock <= ’0’;

311 init_signal_index <= init_signal_index + 1;

312 end if;
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313 elsif (init_signal_index = SETUP_TRANS_MAX_ID + 1) then

314 in_buff_wr_enable <= ’0’;

315 pause_clock <= ’0’;

316 init_signal_index <= init_signal_index + 1;

317 -- #############################################################

318 else

319 -- edge detector for button1 input

320 button1_prev <= button1;

321 if (button1_prev = ’1’ and button1 = ’0’ and (in_buff_empty = ’0’

or setup_complete = ’0’)) then

322 if (streaming = ’0’) then

323 enable_wire <= ’1’;

324 wait_counter <= ENABLE_HOLD - INIT_TIME; -- timer sets

"enable" signal 1ms before transactions start

325 else

326 streaming <= ’0’;

327 end if;

328 end if;

329 -- wait counter for different waiting periods

330 if (wait_counter > 0) then

331 if (wait_counter = 1) then

332 init_counter <= INIT_TIME;

333 if (streaming = ’1’) then

334 wait_counter <= FRAME_TIME;

335 frame_signal_index <= 0; -- reset per frame array

index for current frame

336 end if;

337 end if;

338 wait_counter <= wait_counter - 1;

339 end if;

340 -- init counter for fifo and register init before transaction

start

341 if(init_counter > 0) then

342 if(init_counter = 3) then -- cant use 1 because

register change is too slow

343 if (in_buff_empty = ’0’) then

344 read_in_buff <= ’1’;

345 end if;

346 elsif(init_counter = 2) then

347 instruction_ID <= 1; -- latch start pulse from

button1

348 read_in_buff <= ’0’;

349 -- if (streaming = ’1’ and frame_signal_index <=

PER_FRAME_TRANS_MAX_ID) then

350 -- test <= REPEAT_PER_FRAME_ARRAY(

frame_signal_index);

351 -- end if;

352 elsif(init_counter = 1) then

353 if (streaming = ’1’ and frame_signal_index <=

PER_FRAME_TRANS_MAX_ID) then

354 target_add <= REPEAT_PER_FRAME_ARRAY(

frame_signal_index)(31 downto 25);

355 rw_bit <= REPEAT_PER_FRAME_ARRAY(

frame_signal_index)(24);

356 reg_add <= REPEAT_PER_FRAME_ARRAY(

frame_signal_index)(23 downto 8);

357 data <= REPEAT_PER_FRAME_ARRAY(

frame_signal_index)(7 downto 0);

358 elsif (streaming = ’0’) then

359 read_in_buff <= ’0’;

360

361 target_add <= queue_target_add;

362 rw_bit <= queue_rw_bit;

363 reg_add <= queue_reg_add;

364 data <= queue_data;

365 end if;

366 end if;
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367 init_counter <= init_counter - 1;

368 end if;

369 -- control streaming setting (maybe make dependent on 0100 x1

transaction)

370 if (in_buff_empty = ’0’ or setup_complete = ’0’) then

371 streaming <= ’0’;

372 else

373 streaming <= ’1’;

374 -- wait_counter <= ENABLE_HOLD;

375 end if;

376 -- check for changing busy signal to send next instruction

377 i2c_busy_prev <= i2c_busy;

378 if(i2c_busy_prev = ’0’ and i2c_busy = ’1’ and (wait_counter = 0

or streaming = ’1’)) then

379 instruction_ID <= instruction_ID + 1;

380 end if;

381 case instruction_ID is

382 when 0 =>

383 write_out_buff <= ’0’; -- disable write signal one clock

after enable (in case ’others ’)

384 when 1 => -- set camera adress and write first byte of

target register

385 i2c_ena <= ’1’;

386 i2c_addr <= target_add;

387 i2c_rw <= ’0’;

388 i2c_data_wr <= reg_add (15 downto 8);

389 when 2 => -- write second register address byte

390 i2c_data_wr <= reg_add (7 downto 0);

391 when 3 => -- read or write one byte

392 i2c_rw <= rw_bit;

393 if (rw_bit = ’0’) then

394 i2c_data_wr <= data;

395 else

396 reg_add_out <= reg_add;

397 out_buff_data (15 downto 8) <= i2c_data_rd;

398 end if;

399 when others =>

400 -- if (instruction_ID = 4 and not (data(7 downto 0) = x"00"))

then -- detect larger messages

401 -- i2c_rw <= rw_bit;

402 -- if (rw_bit = ’0’) then

403 -- i2c_data_wr <= data(7 downto 0);

404 -- else

405 -- reg_add_out <= reg_add;

406 -- out_buff_data (7 downto 0) <= i2c_data_rd;

407 -- end if;

408 -- else

409 if (streaming = ’1’) then

410 if (frame_signal_index <= PER_FRAME_TRANS_MAX_ID)

then

411 frame_signal_index <= frame_signal_index + 1;

412 else

413 frame_signal_index <= 0;

414 end if;

415 end if;

416 if (rw_bit = ’1’) then

417 out_buff_data (15 downto 8) <= i2c_data_rd;

418 write_out_buff <= ’1’; -- enable writing recieved

data to fifo_out

419 end if;

420 i2c_ena <= ’0’;

421 instruction_ID <= 0; -- go to empty state and

wait for button1 input or frame timer

422 if (frame_signal_index < PER_FRAME_TRANS_MAX_ID) then

-- do not restart setup after last transaction

423 init_counter <= INIT_TIME; -- wait to induce

separate adressing
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424 elsif (streaming = ’1’) then

425 init_counter <= 0;

426 wait_counter <= FRAME_TIME; -- necessary to

get into wait counter control (could be nicer though)

427 end if;

428 if (in_buff_empty = ’1’) then

429 -- enable_fade <= 24 _180_000 /4_000; --engage

enable_fade counter

430 setup_complete <= ’1’;

431 in_buff_data <= i_DATA;

432 in_buff_wr_enable <= i_WR_ENA;

433 in_buff_full_override <= in_buff_full; -- release

signal flag for normal operation of the fifo

434 end if;

435 -- end if;

436 end case;

437 end if;

438 end if;

439 end process;

440

441 end architecture;

Listing 4.3: CCI broker.
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1 library ieee;

2 use ieee.std_logic_1164.all;

3

4 entity rst_gen is

5 port (CLK : in std_logic;

6 reset : out std_logic := ’1’);

7 end entity;

8

9 architecture rst_gen_behave of rst_gen is

10

11 signal cnt : integer range 0 to 50000 := 0;

12

13 begin

14 process(CLK)

15 begin

16 if rising_edge(CLK) then

17 if cnt = 25000 then

18 reset <= ’0’;

19 cnt <= cnt +1;

20 elsif cnt = 49900 then

21 reset <= ’1’;

22 elsif cnt < 49900 then

23 cnt <= cnt +1;

24 end if;

25 end if;

26 end process;

27

28 end architecture;

Listing 4.4: Reset generator.

1 -- VHDL netlist generated by SCUBA Diamond (64-bit) 3.12.0.240.2

2 -- Module Version: 5.8

3 --C:\lscc\diamond \3.12\ ispfpga\bin\nt64\scuba.exe -w -n fifo -lang vhdl -synth

synplify -bus_exp 7 -bb -arch xo3c00a -type ebfifo -depth 256 -width 32 -

rwidth 32 -no_enable -pe 1 -pf 1

4

5 -- Thu Sep 15 15:31:28 2022

6

7 library IEEE;

8 use IEEE.std_logic_1164.all;

9 -- synopsys translate_off

10 library MACHXO3L;

11 use MACHXO3L.components.all;

12 -- synopsys translate_on

13

14 entity fifo is

15 port (

16 Data: in std_logic_vector (31 downto 0);

17 WrClock: in std_logic;

18 RdClock: in std_logic;

19 WrEn: in std_logic;

20 RdEn: in std_logic;

21 Reset: in std_logic;

22 RPReset: in std_logic;

23 Q: out std_logic_vector (31 downto 0);

24 Empty: out std_logic;

25 Full: out std_logic;

26 AlmostEmpty: out std_logic;

27 AlmostFull: out std_logic);

28 end fifo;

29

30 architecture Structure of fifo is

31

32 -- internal signal declarations

33 signal scuba_vhi: std_logic;

34 signal Empty_int: std_logic;
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35 signal Full_int: std_logic;

36 signal scuba_vlo: std_logic;

37

38 -- local component declarations

39 component VHI

40 port (Z: out std_logic);

41 end component;

42 component VLO

43 port (Z: out std_logic);

44 end component;

45 component FIFO8KB

46 generic (FULLPOINTER1 : in String; FULLPOINTER : in String;

47 AFPOINTER1 : in String; AFPOINTER : in String;

48 AEPOINTER1 : in String; AEPOINTER : in String;

49 ASYNC_RESET_RELEASE : in String; RESETMODE : in String;

50 GSR : in String; CSDECODE_R : in String;

51 CSDECODE_W : in String; REGMODE : in String;

52 DATA_WIDTH_R : in Integer; DATA_WIDTH_W : in Integer);

53 port (DI0: in std_logic; DI1: in std_logic; DI2: in std_logic;

54 DI3: in std_logic; DI4: in std_logic; DI5: in std_logic;

55 DI6: in std_logic; DI7: in std_logic; DI8: in std_logic;

56 DI9: in std_logic; DI10: in std_logic; DI11: in std_logic;

57 DI12: in std_logic; DI13: in std_logic;

58 DI14: in std_logic; DI15: in std_logic;

59 DI16: in std_logic; DI17: in std_logic;

60 CSW0: in std_logic; CSW1: in std_logic;

61 CSR0: in std_logic; CSR1: in std_logic;

62 FULLI: in std_logic; EMPTYI: in std_logic;

63 WE: in std_logic; RE: in std_logic; ORE: in std_logic;

64 CLKW: in std_logic; CLKR: in std_logic; RST: in std_logic;

65 RPRST: in std_logic; DO0: out std_logic;

66 DO1: out std_logic; DO2: out std_logic;

67 DO3: out std_logic; DO4: out std_logic;

68 DO5: out std_logic; DO6: out std_logic;

69 DO7: out std_logic; DO8: out std_logic;

70 DO9: out std_logic; DO10: out std_logic;

71 DO11: out std_logic; DO12: out std_logic;

72 DO13: out std_logic; DO14: out std_logic;

73 DO15: out std_logic; DO16: out std_logic;

74 DO17: out std_logic; EF: out std_logic;

75 AEF: out std_logic; AFF: out std_logic; FF: out std_logic);

76 end component;

77 attribute syn_keep : boolean;

78 attribute NGD_DRC_MASK : integer;

79 attribute NGD_DRC_MASK of Structure : architecture is 1;

80

81 begin

82 -- component instantiation statements

83 fifo_0_1: FIFO8KB

84 generic map (FULLPOINTER1=> "0b00111111110000", FULLPOINTER=> "0

b01000000000000",

85 AFPOINTER1=> "0b00000000000000", AFPOINTER=> "0b00000000010000",

86 AEPOINTER1=> "0b00000000100000", AEPOINTER=> "0b00000000010000",

87 ASYNC_RESET_RELEASE=> "SYNC", GSR=> "DISABLED", RESETMODE=> "ASYNC",

88 REGMODE=> "NOREG", CSDECODE_R=> "0b11", CSDECODE_W=> "0b11",

89 DATA_WIDTH_R=> 18, DATA_WIDTH_W=> 18)

90 port map (DI0=>Data (0), DI1=>Data (1), DI2=>Data (2), DI3=>Data (3),

91 DI4=>Data (4), DI5=>Data (5), DI6=>Data (6), DI7=>Data (7),

92 DI8=>Data (8), DI9=>Data (9), DI10=>Data (10), DI11=>Data (11),

93 DI12=>Data (12), DI13=>Data (13), DI14=>Data (14),

94 DI15=>Data (15), DI16=>Data (16), DI17=>Data (17),

95 CSW0=>scuba_vhi , CSW1=>scuba_vhi , CSR0=>scuba_vhi ,

96 CSR1=>scuba_vhi , FULLI=>Full_int , EMPTYI=>Empty_int ,

97 WE=>WrEn , RE=>RdEn , ORE=>RdEn , CLKW=>WrClock , CLKR=>RdClock ,

98 RST=>Reset , RPRST=>RPReset , DO0=>Q(9), DO1=>Q(10),

99 DO2=>Q(11), DO3=>Q(12), DO4=>Q(13), DO5=>Q(14), DO6=>Q(15),

100 DO7=>Q(16), DO8=>Q(17), DO9=>Q(0), DO10=>Q(1), DO11=>Q(2),
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101 DO12=>Q(3), DO13=>Q(4), DO14=>Q(5), DO15=>Q(6), DO16=>Q(7),

102 DO17=>Q(8), EF=>Empty_int , AEF=>AlmostEmpty , AFF=>AlmostFull ,

103 FF=>Full_int);

104

105 scuba_vhi_inst: VHI

106 port map (Z=>scuba_vhi);

107

108 scuba_vlo_inst: VLO

109 port map (Z=>scuba_vlo);

110

111 fifo_1_0: FIFO8KB

112 generic map (FULLPOINTER1=> "0b00000000000000", FULLPOINTER=> "0

b11111111110000",

113 AFPOINTER1=> "0b00000000000000", AFPOINTER=> "0b11111111110000",

114 AEPOINTER1=> "0b00000000000000", AEPOINTER=> "0b11111111110000",

115 ASYNC_RESET_RELEASE=> "SYNC", GSR=> "DISABLED", RESETMODE=> "ASYNC",

116 REGMODE=> "NOREG", CSDECODE_R=> "0b11", CSDECODE_W=> "0b11",

117 DATA_WIDTH_R=> 18, DATA_WIDTH_W=> 18)

118 port map (DI0=>Data (18), DI1=>Data (19), DI2=>Data (20),

119 DI3=>Data (21), DI4=>Data (22), DI5=>Data (23), DI6=>Data (24),

120 DI7=>Data (25), DI8=>Data (26), DI9=>Data (27), DI10=>Data (28),

121 DI11=>Data (29), DI12=>Data (30), DI13=>Data (31),

122 DI14=>scuba_vlo , DI15=>scuba_vlo , DI16=>scuba_vlo ,

123 DI17=>scuba_vlo , CSW0=>scuba_vhi , CSW1=>scuba_vhi ,

124 CSR0=>scuba_vhi , CSR1=>scuba_vhi , FULLI=>Full_int ,

125 EMPTYI=>Empty_int , WE=>WrEn , RE=>RdEn , ORE=>RdEn ,

126 CLKW=>WrClock , CLKR=>RdClock , RST=>Reset , RPRST=>RPReset ,

127 DO0=>Q(27), DO1=>Q(28), DO2=>Q(29), DO3=>Q(30), DO4=>Q(31),

128 DO5=>open , DO6=>open , DO7=>open , DO8=>open , DO9=>Q(18),

129 DO10=>Q(19), DO11=>Q(20), DO12=>Q(21), DO13=>Q(22),

130 DO14=>Q(23), DO15=>Q(24), DO16=>Q(25), DO17=>Q(26), EF=>open ,

131 AEF=>open , AFF=>open , FF=>open);

132

133 Empty <= Empty_int;

134 Full <= Full_int;

135 end Structure;

136

137 -- synopsys translate_off

138 library MACHXO3L;

139 configuration Structure_CON of fifo is

140 for Structure

141 for all:VHI use entity MACHXO3L.VHI(V); end for;

142 for all:VLO use entity MACHXO3L.VLO(V); end for;

143 for all:FIFO8KB use entity MACHXO3L.FIFO8KB(V); end for;

144 end for;

145 end Structure_CON;

146

147 -- synopsys translate_on

Listing 4.5: Lattice FIFO.

1 library ieee;

2 use ieee.std_logic_1164.all;

3

4 -- clock divider

5 -- Period(o_clk) = 2 * N * Period(i_clk)

6 entity clkdiv is

7 generic (

8 N : positive := 1--;

9 );

10 port (

11 o_clk : out std_logic;

12 i_reset_n : in std_logic := ’1’;

13 i_clk : in std_logic --;

14 );

15 end entity;

16
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17 architecture arch of clkdiv is

18

19 signal clk : std_logic := ’0’;

20 signal cnt : integer range 0 to N-1 := 0;

21

22 begin

23

24 o_clk <= clk;

25

26 process(i_clk , i_reset_n)

27 begin

28 if ( i_reset_n = ’0’ ) then

29 clk <= ’0’;

30 cnt <= 0;

31 --

32 elsif rising_edge(i_clk) then

33 if ( cnt = N-1 ) then

34 clk <= not clk;

35 cnt <= 0;

36 else

37 cnt <= cnt + 1;

38 end if;

39 --

40 end if;

41 end process;

42

43 end architecture;

Listing 4.6: Clock divider.
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1

2 ----------------------------------------------------------

3 -- Error Correction Module for FPGA bridge --

4 -- Philipp Freundlieb pfreundl@students.uni -mainz.de --

5 ----------------------------------------------------------

6

7 library ieee;

8 use ieee.std_logic_1164.all;

9 use ieee.numeric_std.all;

10 use ieee.std_logic_misc.xor_reduce;

11

12

13 ENTITY ECC is

14 port (

15 i_clk : in std_logic;

16 i_reset_n : in std_logic;

17

18 --packet header elements

19 ECC_in : in std_logic_vector (7 downto 0); -- error correction code

in the arriving packet

20 VC_in : in std_logic_vector (1 downto 0); -- virtual channel

identifier MSB of data identifier DI

21 DT_in : in std_logic_vector (5 downto 0); -- data type LSB of data

identifier

22 WC_in : in std_logic_vector (15 downto 0); -- word count

23

24 --error flags

25 corrected_error : out std_logic; -- a single bit error has been found

and corrected

26 higher_order_error : out std_logic; -- two or more bits are erroneous

27 no_error : out std_logic; -- no error has been detected

28

29 packet_header_out : out std_logic_vector (23 downto 0) -- corrected packet

header

30 );

31

32 END ENTITY;

33

34 architecture ECC_behave of ECC is

35

36 type syndrome_array is array (0 to 23) of std_logic_vector (7 downto 0);

37

38 --hard coded lookup matrix , taken from the CSI -2 documentation

39 constant SYNDROM_LOOKUP : syndrome_array :=

40 (x"07", x"0B", x"0D", x"0E", x"13", x"15", x"16", x"19",

41 x"1A", x"1C", x"23", x"25", x"26", x"29", x"2A", x"2C",

42 x"31", x"32", x"34", x"38", x"1F", x"2F", X"37", x"3B");

43

44

45 signal parity_in : std_logic_vector (7 downto 0); -- transmitted parity

byte

46 signal header_data : std_logic_vector (23 downto 0); -- recombined

47 signal parity : std_logic_vector (7 downto 0); -- newly calculated

paritybits

48 signal syndrome : std_logic_vector (7 downto 0); -- syndrome of parity

comparison

49 signal single_header_error : std_logic; -- flag wether a singular

error in the header occured

50 signal temp_packet_header : std_logic_vector (7 downto 0);

51

52 begin

53 -- note: this process might need more pipelining to work properly!

54 process(i_reset_n , i_clk)

55 begin

56 if i_reset_n = ’0’ then

57 -- TODO reset here

58 elsif rising_edge(i_clk) then
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59 parity_in <= ECC_in (7 downto 0); -- latch parity byte

60 header_data <= WC_in & VC_in & DT_in; -- latch header data for rx

ecc calculation

61

62 -- bit vectors and formula taken from CSI -2 documentation

63 parity <= "00" &

64 xor_reduce(header_data xor "111011111111110000000000") &

65 xor_reduce(header_data xor "110111110000001111110000") &

66 xor_reduce(header_data xor "101110001110001110001110") &

67 xor_reduce(header_data xor "011101001001101001101101") &

68 xor_reduce(header_data xor "111100100101010101011011") &

69 xor_reduce(header_data xor "111100010010110010110111");

70

71 syndrome <= parity_in xor parity;

72

73 if syndrome = "00000000" then

74 -- parity in and calculated parity byte are the same -> no error

75 no_error <= ’1’;

76 corrected_error <= ’0’;

77 higher_order_error <= ’0’;

78 elsif (syndrome = "00000001" or syndrome = "00000010" or syndrome = "

00000100" or syndrome = "00001000" or syndrome = "00010000" or syndrome = "

00100000" or syndrome = "01000000" or syndrome = "10000000") then

79 -- the incoming ecc byte is erroneous , but can be corrected using the

syndrome itself:

80 packet_header_out (7 downto 0) <= parity_in xor syndrome;

81 no_error <= ’0’;

82 corrected_error <= ’1’;

83 higher_order_error <= ’0’;

84 else

85 single_header_error <= ’0’; -- reset for later hook

86 for index in 0 to 23 loop

87 if syndrome = SYNDROM_LOOKUP(index) then

88 header_data(index) <= not header_data(index); -- check synthesis

result for this , might get far larger than expected

89 packet_header_out <= header_data;

90 no_error <= ’0’;

91 corrected_error <= ’1’;

92 higher_order_error <= ’0’;

93 single_header_error <= ’1’;

94 end if;

95 end loop;

96 if single_header_error = ’0’ then -- hook (to keep else case out of for

-generator)

97 -- more than one bit error occured -> non -recoverable

98 no_error <= ’0’;

99 corrected_error <= ’0’;

100 higher_order_error <= ’1’;

101 end if;

102 end if;

103 end if;

104 end process;

105 end architecture;

Listing 4.7: Error correction module.
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1 // --------------------------------------------------------------------

2 // >>>>>>>>>>>>>>>>>>>>>>>>> COPYRIGHT NOTICE <<<<<<<<<<<<<<<<<<<<<<<<<

3 // --------------------------------------------------------------------

4 // Copyright (c) 2006 by Lattice Semiconductor Corporation

5 // --------------------------------------------------------------------

6 //

7 // Permission:

8 //

9 // Lattice Semiconductor grants permission to use this code for use

10 // in synthesis for any Lattice programmable logic product. Other

11 // use of this code , including the selling or duplication of any

12 // portion is strictly prohibited.

13 //

14 // Disclaimer:

15 //

16 // This VHDL or Verilog source code is intended as a design reference

17 // which illustrates how these types of functions can be implemented.

18 // It is the user ’s responsibility to verify their design for

19 // consistency and functionality through the use of formal

20 // verification methods. Lattice Semiconductor provides no warranty

21 // regarding the use or functionality of this code.

22 //

23 // --------------------------------------------------------------------

24 //

25 // Lattice Semiconductor Corporation

26 // 5555 NE Moore Court

27 // Hillsboro , OR 97214

28 // U.S.A

29 //

30 // TEL: 1-800- Lattice (USA and Canada)

31 // 408 -826 -6000 (other locations)

32 //

33 // web: http ://www.latticesemi.com/

34 // email: techsupport@latticesemi.com

35 //

36 // --------------------------------------------------------------------

37 //

38 // This is a serial DDR LVDS to SDR CMOS parallel bridge

39 //

40 //

41 // --------------------------------------------------------------------

42 //

43 // Revision History :

44 // --------------------------------------------------------------------

45 // Ver :| Author :| Mod. Date :| Changes Made:

46 // V1.0 :| GJenning :| 05/09/12 :| Alpha Release

47 //

------------------------------------------------------------------------------------------------------------------------------------------

48

49 module MIPI_CSI2_Serial2Parallel_Bridge #(

50 parameter bus_width = 10 , // 6-24 - the width of

the pixel data , only formats supported by CSI2 Specification

51 parameter lane_width = 2 , // 1, 2, 4 - the number

of lanes used , 10 bit or 12 bit widths supported

52 parameter lp_mode = "OFF" , // OFF , ON - changes

clocking scheme for use when clock contains both HS and LP modes; OFF = free

running clock , ON=LP mode in blanking periods

53 parameter line_length_detect = 0 , // 0, 1 - setting this

to one will only allow line valid to go active for lines of size line_length

54 parameter line_length = 2400 , // - Only valid

if line_length_detect = 1. Number of bytes in a line. Example: 1920, 10 bit

pixels per line = 1920*10/8 = 2400. Should be set to the expected value of

word count in the CSI2 Packet Header

55 parameter format = "RAW10" ) // - Defines

output format type

56 (
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57 input wire rstn , // reset , active low

58 input wire DCK , // serial input clock

59

60 input CH0 ,

61 input CH1 ,

62 input CH2 ,

63 input CH3 , // LVDS DDR input data

64 output pixclk_adj , // output pixel clock

65 output [bus_width -1:0] pixdata , // output SDR data(LVCMOS)

66 output fv , // frame valid output

67 output lv , // line valid output

68 output [1:0] vc , // virtual channel identifier

output

69 output [5:0] dt , // data type output

70 output [15:0] wc , // word count output

71 output [7:0] ecc , // error correction code

output

72

73 input sensor_clk

74

75 );

76

77 wire [31:0] din , ch_din;

78 wire pixclk;

79

80 deser deser(. alignwd(1’b0), .clk(DCK), .clk_s(sensor_clk), .init(1’b1), .reset (~

rstn), .rx_ready(rx_ready), .sclk(sclk_in), /* .clk_div2(clk_div2),*/ .datain

({CH3 ,CH2 ,CH1 ,CH0}), .q(din));

81

82 MIPI_CSI2_Serial2Parallel #(. bus_width(bus_width), .lane_width(lane_width), .

format(format)) serial2parallel (.rstn(lock), .din(ch_din), .fv(fv), .lv(lv),

.pixdata(pixdata), .pixclk(pixclk), .sclk(sclk), .vc(vc), .dt(dt), .wc(wc), .

ecc(ecc), .line_length_detect(line_length_detect), .line_length(line_length))

;

83

84 generate

85 if (bus_width ==8 & lane_width == 1 & lp_mode =="ON")

86 pll_8bit_1lane_lp pll(.CLKI(sensor_clk), .RST(~rstn), .CLKOP(pixclk), .

CLKOS(pixclk_adj), .CLKOS2(sclk), .LOCK(lock));

87 else if (bus_width ==8 & lane_width == 2 & lp_mode =="ON")

88 pll_8bit_2lane_lp pll(.CLKI(sensor_clk), .RST(~rstn), .CLKOP(pixclk), .

CLKOS(pixclk_adj), .CLKOS2(sclk), .LOCK(lock));

89 else if (bus_width ==10 & lane_width == 4 & lp_mode =="ON")

90 pll_10bit_4lane_lp pll(.CLKI(sensor_clk), .RST(~rstn), .CLKOP(pixclk),

.CLKOS(pixclk_adj), .CLKOS2(sclk), .LOCK(lock));

91 else if (bus_width ==12 & lane_width == 4 & lp_mode =="ON")

92 pll_12bit_4lane_lp pll(.CLKI(sensor_clk), .RST(~rstn), .CLKOP(pixclk),

.CLKOS(pixclk_adj), .CLKOS2(sclk), .LOCK(lock));

93 else if (bus_width ==14 & lane_width == 4 & lp_mode =="ON")

94 pll_14bit_4lane_lp pll(.CLKI(sensor_clk), .RST(~rstn), .CLKOP(pixclk),

.CLKOS(pixclk_adj), .CLKOS2(sclk), .LOCK(lock));

95 else if (bus_width ==10 & lane_width == 2 & lp_mode =="ON")

96 pll_10bit_2lane_lp pll(.CLKI(sensor_clk), .RST(~rstn), .CLKOP(pixclk),

.CLKOS(pixclk_adj), .CLKOS2(sclk), .LOCK(lock));

97 else if (bus_width ==12 & lane_width == 2 & lp_mode =="ON")

98 pll_12bit_2lane_lp pll(.CLKI(sensor_clk), .RST(~rstn), .CLKOP(pixclk),

.CLKOS(pixclk_adj), .CLKOS2(sclk), .LOCK(lock));

99 else if (bus_width ==10 & lane_width == 1 & lp_mode =="ON")

100 pll_10bit_1lane_lp pll(.CLKI(sensor_clk), .RST(~rstn), .CLKOP(pixclk),

.CLKOS(pixclk_adj), .CLKOS2(sclk), .LOCK(lock));

101 else if (bus_width ==12 & lane_width == 1 & lp_mode =="ON")

102 pll_12bit_1lane_lp pll(.CLKI(sensor_clk), .RST(~rstn), .CLKOP(pixclk),

.CLKOS(pixclk_adj), .CLKOS2(sclk), .LOCK(lock));

103 else if (bus_width ==8 & lane_width == 1 & lp_mode =="OFF") begin

104 pll_8bit_1lane pll(.CLKI(sclk_in), .RST(~rstn), .CLKOP(pixclk), .CLKOS(

pixclk_adj), .LOCK(lock)); assign sclk = sclk_in; end

105 else if (bus_width ==8 & lane_width == 2 & lp_mode =="OFF") begin
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106 pll_8bit_2lane pll(.CLKI(sclk_in), .RST(~rstn), .CLKOP(pixclk), .CLKOS(

pixclk_adj), .LOCK(lock)); assign sclk = sclk_in; end

107 else if (bus_width ==10 & lane_width == 4 & lp_mode =="OFF") begin

108 pll_10bit_4lane pll(.CLKI(sclk_in), .RST(~rstn), .CLKOP(pixclk), .CLKOS

(pixclk_adj), .LOCK(lock)); assign sclk = sclk_in; end

109 else if (bus_width ==12 & lane_width == 4 & lp_mode =="OFF") begin

110 pll_12bit_4lane pll(.CLKI(sclk_in), .RST(~rstn), .CLKOP(pixclk), .CLKOS

(pixclk_adj), .LOCK(lock)); assign sclk = sclk_in; end

111 else if (bus_width ==10 & lane_width == 2 & lp_mode =="OFF") begin

112 pll_10bit_2lane pll(.CLKI(sclk_in), .RST(~rstn), .CLKOP(pixclk), .CLKOS

(pixclk_adj), .LOCK(lock)); assign sclk = sclk_in; end

113 else if (bus_width ==12 & lane_width == 2 & lp_mode =="OFF") begin

114 pll_12bit_2lane pll(.CLKI(sclk_in), .RST(~rstn), .CLKOP(pixclk), .CLKOS

(pixclk_adj), .LOCK(lock)); assign sclk = sclk_in; end

115 else if (bus_width ==10 & lane_width == 1 & lp_mode =="OFF") begin

116 pll_10bit_1lane pll(.CLKI(sclk_in), .RST(~rstn), .CLKOP(pixclk), .CLKOS

(pixclk_adj), .LOCK(lock)); assign sclk = sclk_in; end

117 else if (bus_width ==12 & lane_width == 1 & lp_mode =="OFF") begin

118 pll_12bit_1lane pll(.CLKI(sclk_in), .RST(~rstn), .CLKOP(pixclk), .CLKOS

(pixclk_adj), .LOCK(lock)); assign sclk = sclk_in; end

119 else if (bus_width ==14 & lane_width == 4 & lp_mode =="OFF") begin

120 pll_14bit_4lane pll(.CLKI(clk_div2), .RST(~rstn), .CLKOP(pixclk), .

CLKOS(pixclk_adj), .LOCK(lock)); assign sclk = sclk_in; end

121 else if (bus_width ==18 & lane_width == 4 & lp_mode =="OFF") begin

122 pll_18bit_4lane pll(.CLKI(sclk_in), .RST(~rstn), .CLKOP(pixclk), .CLKOS

(pixclk_adj), .LOCK(lock)); assign sclk = sclk_in; end

123 else if (bus_width ==24 & lane_width == 4 & lp_mode =="OFF") begin

124 pll_24bit_4lane pll(.CLKI(sclk_in), .RST(~rstn), .CLKOP(pixclk), .CLKOS

(pixclk_adj), .LOCK(lock)); assign sclk = sclk_in; end

125 endgenerate

126

127 generate

128 if (lp_mode =="ON")

129 LP_crossclk_cnvrt LP_crossclk_cnvrt (.Data(din), .WrClock(sclk_in), .

RdClock(sclk), .WrEn (1), .RdEn (1), .Reset (~rstn), .RPReset (~rstn), .Q(ch_din)

, .Empty(deser_ready));

130 else if (lp_mode =="OFF")

131 assign ch_din = din;

132 endgenerate

133

134 endmodule

Listing 4.8: Lattice CSI-2 bridge main component.
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