
Securing the future of Nuclear Energy

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2024-04106O

Advanced MELCOR Control Function Topics
MELCOR Development Team

SAND2022-4172TR

• Provide a very cursory overview of the CF package
• Various CF types

• Required and optional input

• CF evaluation

• Likely insufficient discussion for a new user

• Refer to the UG manual for more description

• In-depth discussions in week-long workshop

• Main objective is to focus on more advanced topics
• Often there is insufficient time in a week-long workshop to

discuss advanced topics.

• Many new features have been added that experienced
users may be unaware of.

• Examples drawn from applications

Objective of Presentation

• “Control Functions” are simply user-defined
functions of MELCOR-calculated variables

• May be LOGICAL- or REAL-valued

• All functions are evaluated at the start of every time step

• All control-function-based models are numerically explicit

• Many uses, not just control
• Define door behavior, failure conditions, chemical

reactions.

• Define internally-calculated sources and boundary
conditions

• Many variables in MELCOR database are available
as arguments for control functions

• Any CF variable can be written to an external data file

• Any CF variable can be added to the plot file

MELCOR Control Functions (CF) Overview

• Required input for each control function
• User-defined name

• Function type (Add, EXP, SIN, L-AND, L-OR, etc.)

• Type determines whether value is REAL or LOGICAL

• Number of arguments

• List of arguments

• Required input for REAL-valued control function
• Multiplicative scale factor

MELCOR Control Functions
CF Input: Required Input

MELCOR Control Functions
CF Input: Optional Input

• Optional Input for each control function
• Initial value (real, true or false)

• Only needed if value will be needed early

• Optional Input for REAL control function
• Additive constant for function (default = 0.0)

• Evaluated as CFn = scale*fn[X(t)] + add

• Upper and lower bounds

• Results bounded within limits

• Units (used for plotting purposes only)

• Optional Input for LOGICAL control function
• Message to be output when function switches state

• Report user-defined ‘events’ in the output files

• Logical function classification as ‘LATCH’ or ‘ONE-SHOT’

• If initially FALSE, ‘ONE-SHOT’ can be TRUE for one step only; if initially TRUE, ‘LATCH’ can
only be .FALSE. once

CF_Units is the ASCII record for
specifying units for a control function.
Currently, the SNAP MELCOR plugin
does not support this feature.

• Most FORTRAN and simple math functions
• Arithmetic, trigonometric, hyperbolic, and LOGICAL

• Tabular function (using table in TF package)

• IF-THEN-ELSE structures

• Numerical integrals and derivatives
• Includes a proportional-integral-differential (PID) controller

• Hysteresis function
• References TF package to defined loading/unloading curves

• A variety of “trips”
• Trips are REAL-valued; value returned is time since trips
• Simplifies logic involving delays
• Usable as timer or ramp-generator

• Proportional-Integral-Differential Control Function (PID)

• Lag function
• Evaluated as a scaled change in the function value by scaling the change in the

argument (Time Lag) as well providing a multiplication scale for the argument.

• Larson-Miller creep rupture Control Function (LM-CREEP)
• Evaluates cumulative damage based on the Larson-Miller creep rupture failure

model and gives time to rupture in seconds

• Pipe stress control function (PIPE-STR)
• Evaluates maximum stress in a thick-walled cylindrical pipe under internal

pressure

• User-Defined function (FORMULA)
• Allows definition of a complicated function on a single

record instead of series of records

MELCOR Control Functions
Built-in Functional Forms

• Many variables in MELCOR time-dependent
database are available as function arguments

• Not all variables, due to coding required to access them

• Most are REAL-valued, but a few are LOGICAL

• Listed, by package, in the various User’s Guides

• Most packages use names of form xyz-name
• “xyz” identifies the package and “name” the variable

• e.g.) CVH-TOT-M(O2) is total O2 mass in CVH package

• Simple names for those defined by Executive
Package

• EXEC-TIME is problem time

• EXEC-DT is (system) time step

• EXEC-CPU is (total) computer time

MELCOR Control Functions
Control Function Arguments

Where To Find CF Arguments

Notice SNAP refers to
‘CVH variables’ as
‘Volume Variables’

Notice SNAP list refers
to CPUC rather than
CVH-CPUC

UG list refers to
CVH-CPUC

Listed & Described in
package UG (i.e., CVH)

Drop-down list of SNAP supported
CF arguments in Database Variables

• Many control function arguments are essentially
elements of arrays

• Index is user-defined name of volume, flowpath, etc.

• Index is added to name in a parenthesis

• CVH-P(ROOM1) is pressure in ‘ROOM1’ volume

• CVH-TVAP(ROOM1) is atmosphere temperature in ‘ROOM1’
volume

• Arrays may have more than one index

• FL-MFLOW(vent,all) is total mass flow in flowpath ‘vent’

• EDF(out-10, 2) is data channel 2 in EDF ‘out-10’

• RN1-ADEP(HS1, LHS, CE, TOT) is total deposited mass of CE
class on the left hand side (LHS) of heat structure ‘HS1’

MELCOR Control Functions
Control Function Argument Arrays

This is different than Vectorized control functions and
Ranges. This will be discussed later

• Values of control functions are available for
use as arguments of other control functions

• Can construct composite functions such as

• Functions are evaluated in the numerical
order of the CF number (not on order read)

• A function should ordinarily use only previously-
defined functions as arguments

• There are exceptions, where the value from the
previous time step is desired

• Evaluating out of order will use the previous time
step value

MELCOR Control Functions
Composite Functions

() IMsin

MELCOR Control Functions
Use of CF-CONST is best practice

CF_ID ‘Pi’ 10 EQUALS
! Multiplier for function
! vvvvv
CF_SAI 3.1415 ! Add 0.0 (default)
CF_ARG 1 ! NARG CHARG ARSCAL ARADCN
 1 EXEC-TIME 0.0 1.0

CF_ID ‘Pi’ 10 EQUALS
CF_SAI 1.0 ! Mult 1; Add 0.0 (default)
CF_ARG 1 ! NARG CHARG ARSCAL ARADCN
 1 EXEC-TIME 0.0 3.1415

Value returned is
 3.1415 x [(EXEC-TIME x 0.0) + 1.0] + 0.0 = 3.1415

Value returned is
 1.0 x [(EXEC-TIME x 0.0)+3.14156] + 0.0 = 3.14156

CF_ID ‘Pi’ 10 EQUALS
CF_SAI 1.0 ! Mult 1; Add 0.0 (default)
CF_ARG 1 ! NARG CHARG ARSCAL ARADCN
 1 CF-CONST 3.1415

Argument EXEC-TIME may

need to be added to model

database.
Value returned is 1.0 x [3.14156] + 0.0 = 3.14156

S
N

A
P

 I
m

p
le

m
e
n

ta
ti

o
n

 o
f

a
lt

e
rn

a
te

 f
o

rm
 2

• Alternate form 1 for constant control function

• Alternate form 2 for constant control function

• Best Practice

Consider referencing this CF in other
CFs for consistency in constants

Flexibility in Constructing CFs
Alternate Ways for Calculating Pipe Stress

• Equation for Simple Pipe Stress

• Using PIPE-STR type CF

• Using FORMULA type CF

CF_ID ‘Stress’ 120 FORMULA
CF_SAI 1.0 0.0
CF_FORMULA 5 ((Ro^two+Ri^two)*Pi-two*Ro^two*Po)/(Ro^two-Ri^two)
 1 Pi CVH-P(CV500) ! Inner pressure
 2 Po CVH-P(CV8) ! Outer pressure
 3 Ri 0.37 ! Inner radius (constant value)
 4 Ro 0.45 ! Outer radius (constant value)
 5 two 2.0 ! (constant value)

CF_ID Stress PIPE-STR
CF_SAI 1.0 0.0
CF_MSC 0.37 0.45 !Inner & Outer radii
CF_ARG 2 ! NARG CHARG ARSCAL ARADCN

1 CVH-P(CV500) 1. 0. ! Inner pressure (hot leg)
2 CVH-P(CV8) 1. 0. ! Outer pressure (containment)

𝜎𝑚𝑎𝑥 𝑡 =
𝑃𝑖 𝑅𝑜

2 + 𝑅𝑖
2 − 2𝑅𝑜

2 ∙ 𝑃0

𝑅𝑜
2 − 𝑅𝑖

2

Flexibility in Constructing CFs
Alternate Ways for Calculating Pipe Stress

• Using MELCOR Classic Control Functions (MELCOR 1.8.5)

CF_ID STRESS DIVIDE 17
CF_SAI 1.0 0.0
CF_ARG 2 ! NARG CHARG ARSCAL ARADCN

1 CF-VALU(NUMERATOR) 1. 0.
2 CF-VALU(DENOMINATOR) 1. 0.

CF_ID Numerator ADD 16
CF_SAI 1.0 0.0
CF_ARG 2 ! NARG CHARG ARSCAL ARADCN

1 CF-VALU(TERM1) 1.0 0.
2 CF-VALU(TERM2) -1. 0.

CF_ID TERM1 MULTIPLY 15
CF_SAI 1.0 0.0
CF_ARG 2 ! NARG CHARG ARSCAL ARADCN

1 CF-VALU(SumR2) 1. 0.
2 CVH-P(CV500) 1. 0.

CF_ID SumR2 ADD 14
CF_SAI 3.1415 0.0
CF_ARG 2 ! NARG CHARG ARSCAL ARADCN

1 CF-VALU(RO2) 1. 0.
2 CF-VALU(RI2) 1. 0.

CF_ID TERM2 MULTIPLY 13
CF_SAI 2.0 0.0
CF_ARG 2 ! NARG CHARG ARSCAL ARADCN

1 CF-VALU(RO2) 1. 0.
2 CVH-P(CV8) 1. 0.

CF_ID DENOMINATOR ADD 12
CF_SAI 1.0 0.0
CF_ARG 2 ! NARG CHARG ARSCAL ARADCN

1 CF-VALU(RO2) 1. 0.
2 CF-VALU(RI2) -1. 0.

CF_ID RO2 POWER-I 11
CF_MSC 2.0
CF_SAI 1.0 0.0
CF_ARG 1 ! NARG CHARG ARSCAL ARADCN

1 CF-CONST 0.45
2 CF-VALU(RO1) -1. 0.

CF_ID RI2 POWER-I 10
CF_MSC 2.0
CF_SAI 1.0 0.0
CF_ARG 1 ! NARG CHARG ARSCAL ARADCN

1 CF-CONST 0.37
2 CF-VALU(RO1) 1. 0.

𝜎𝑚𝑎𝑥 𝑡 =
𝑃𝑖 𝑅𝑜

2 + 𝑅𝑖
2 − 2𝑅𝑜

2 ∙ 𝑃0

𝑅𝑜
2 − 𝑅𝑖

2

This method not recommended!

Harder to read and more prone to

mistakes!

Note: 8 Control Functions Used

MELCOR Control Functions
Using CF to Control MELCOR Output and Time Step Control

• When ‘failure’ occurs
• Generate restart and plot at time of failure

• Reduce time step for next 100.0 seconds

EXEC_INPUT
EXEC_RESTARTCF ‘E+R Flag’
EXEC_PLOTCF ‘E+R Flag’
EXEC_DTMAXCF ‘dt-control’
...

CF_INPUT
CF_ID ‘E+R Flag’ 105 L-EQUALS
CF_LIV FALSE ! Initial value is .false.
CF_CLS ONE-SHOT ! .true. only once
CF_ARG 1
 1 CF-VALU(‘Failure’) 0. 0.
CF_ID ‘Failed’ 106 L-EQUALS
CF_LIV FALSE ! Initial value is .false.
CF_CLS ‘LATCH’ ! Once true, always true
CF_ARG 1
 1 CF-VALU(‘Failure’) 0. 0.

‘Failure’ becomes true and stays true after condition met.

‘E+R Flag’ is true only on one cycle when Failure initially

occurs (ONE-SHOT).

Maximum time step reduction for next 100 seconds after failure

occurs (1stReduction)

CF_ID dt-control 1000 max
CF_SAI 1.0 0.0 -1.0
cf_arg 2

 1 CF-VALU(1stReduction) 1.0 0.0
 2 CF-VALU(2ndReduction) 1.0 0.0

!
CF_ID tfail 1002 trip !Time since failure
CF_SAI 1.0 0.0 0.0
CF_ARG 1

 1 CF-VALU(‘Failed’)
!
CF_ID ‘t<100’ 1003 l-gt !<100 s after failure
CF_LIV false
CF_ARG 2

 1 CF-CONST 100.0
 2 CF-VALU(tfail) 1.0 0.0

!
CF_ID ‘Fail&t<100’ 1004 l-and
CF_LIV false
CF_ARG 2

 1 CF-VALU(Failed) ! failed (latch)
 2 CF-VALU(‘t<100’) ! timer

!
CF_ID 1stReduction 1005 l-a-ifte
CF_SAI 1.0 0.0 -1.0
CF_ARG 3

 1 CF-VALU(‘Fail&t<100’)
 2 CF-CONST 0.01
 3 CF-CONST -1.0

When tfail >100.0 s, return to
MELCOR maximum time step

Example: T-O-R
CF_ID ‘Hole’ T-O-F
CF_SAI 0.5 0.0 0.0
CF_MSC -1.0 2.E5
CF_ARG 1 ! Pressure calculated by CF
 1 CFVALU(‘pressure’) 1.0 0.0

Value of trip is different whether state
variable CF (‘pressure’) is evaluated before
or after CFVALU(‘Hole’).

Difference is time-step dependent.

Using CVH-P(CV300) as we did in our previous
example does not have this dependency

Numbering of CF Determines Order of Evaluation

• User assigns a number to a
Control Function

• CFs are evaluated in order of
increasing number (be aware of
various states of CFs)

CF_ID 'Hole‘ 101 L-A-IFTE

User
assigned
number

Example of CF Intentionally Using a Value
From Previous Time Step

• Calculate maximum pressure in volume 200

! REAL function, 2 or more arguments
! vvv
CF_ID ‘Peak P.200’ 110 MAX
CF_SAI 1.0 0.0 0.0 ! Initialize to zero
! Argument Scale Add
CF_ARG 2 ! NARG CHARG ARSCAL ARADCN
 1 CVH-P(‘CV200’) 1.0 0.0 ! *CURRENT*
 ! pressure in volume CV200
 2 CF-VALU(‘Peak P.200’) 1.0 0.0 ! *PREVIOUS*
 ! value of maximum

This is an example of a CF that references itself. In

this case, it uses the value from the previous

timestep.

MELCOR Control Functions
Input Changes on Restart

• Change any CF and TF parameters from the
restart

• Allow addition of new CFs and TFs

• Easy to run variations of a failure criterion

• Run multiple scenarios that branch late in a sequence
• Define input to include several failure paths

• Run alternate sequences by restarting from a point before failure,
changing break sizes, leak paths, or bounds/limits to allow a different
path

• No need to re-run a long pre-failure calculation

• Continue calculation from last restart dump
• Need to set ‘MEL_RESTARTFILE’ record in environmental data

appropriately
• e.g., MEL_RESTARTFILE ‘RUN1.RST' NCYCLE -1

MELCOR Control Functions
Input Changes During a MELCOR Run(2)

• Change actual value of control function thru
READ (for REAL-valued) and L-READ (for
LOGICAL-valued) option during a MELCOR run

• Requires a new file containing name of CF and new value
• New value type must match type of CF (REAL or LOGICAL)

• New file name specified on “EXEC_CFEXFILE” record

• Can be used to simply turn-on or –off a valve without stopping
and restarting a calculation

• Both L-READ and READ control functions could be used with
SNAP on-the-fly simulations.

Application of LAG Control Function
MSR- offgas system

From the pump bowl

c
v
-6

0
0

cv-605
cv-601

Water-cooled flow
Charcoal beds

cv-610

cv-615

Water-cooled flow

cv-635

Aux. Charcoal beds

cv-620

cv-625

R
o

u
g

h
in

g
 f
ilt

e
r

A
b

s
o

lu
te

 f
ilt

e
r

c
v
-6

9
9

Plant stack

F
ilt

e
r

p
it

Building HVAC

Lag example for off-gas filter

• Helium purge flow introduced via the pump bowl, overflow tank, and the pump shaft

• Off-gas flow control valve adjusted to maintain +5 psig over-pressure by regulating the

helium exit flow

• Entire primary loop pressure response to changes in the valve position

Lag control function used to smooth pressure signal for valve
controller

• MELCOR variables are updated at
the timestep frequency and may be
too rapidly changing

• Prior to lag variable, old-time
weighting was used to smooth input
signals

P t = c * P t + (1 – c) * P t-1

Where P is a signal (e.g., pressure) and “t”
is current time and “t-1” is the previous
timestep value and c varies the amount of
old-time weighting

This is a bad practice because it is
timestep dependent!

• The lag is not timestep dependent
and can be used to smooth input or
output signals for plant controllers.

• Example on the RHS is a
Proportional-Integral controller for the
off-gas valve to maintain a 5 psig
over-pressure

!!

! Pump-bowl Pressure stabilization

!!

cf_id 'P_lag' 1098 lag

cf_sai 1.0 0.0 0.0000E+00

cf_msc 0.25 1.0

cf_arg 1

 1 cvh-p('Pump_Bowl') 1.0

cf_id 'Perr' 1099 Formula

cf_sai 1.0 0.0 -2.1399E+00

cf_formula 3 active*(P-Pset)

 1 active cf-valu('OffG_Vlv')

 2 P cf-valu('P_lag')

 3 Pset 135798.8

!

cf_id 'OG_I' 1100 integ

cf_sai 1.0 0.0 9.8925E+05

cf_ulb 1 0.0

cf_arg 2

 1 cf-valu('Perr') 1.0

 2 exec-time 1.0

cf_id 'OG_PI' 1101 Formula

cf_sai 1.0 0.0 9.8903E-01

cf_ulb 1 0.0

cf_formula 6 l-a-ifte(active,freeze,gain1*Perr+gain2*Pi)

 1 active cf-valu('Transient')

 2 freeze cf-valu('OG_PI')

 3 gain1 1.0E-04

 4 Perr cf-valu('Perr')

 5 gain2 1.0E-06

 6 Pi cf-valu('OG_I')

Lag Control Function (Implementation)

• Use of Lag CF to process thermal and fluid data for system control
processes.

CF_ID 'LAG' 5028 LAG

CF_SAI 1.0 0.0 0.0

CF_ARG 1

 1 CF-VALU('cSteps') 1.0 0.0 !function, a1
CF_MSC 0.5 1.0

unit step function

varying c2 with c1 = constant = 0.01.
unit step varying c1 with c2 =

constant = 1

𝑓 𝑡 = න

𝑡0

𝑡
𝑐2𝑎1 𝑡′ − 𝑓 𝑡′

𝑐1
𝑑𝑡′

first MSC parameter is the time

lag (c1) while the second is a

multiplier (c2)

Lag Control Function (Solution)

Integral equation for lag:

𝑓 𝑡𝑛+1 ≈ 𝑓 𝑡𝑛 ⋅ e
−

𝑑𝑡
𝑐1 +

𝑐2

𝑐1
⋅

𝑑𝑡

2
⋅ 𝑎 𝑡𝑛 ⋅ e

−
𝑑𝑡
𝑐1 + 𝑎 𝑡𝑛+1

exp −
𝑑𝑡

𝑐1
≈

1 −
𝑑𝑡
2𝑐1

1 +
𝑑𝑡
2𝑐1

𝑓 𝑡𝑛+1 ≈
𝑓 𝑡𝑛 ⋅ 1 −

𝑑𝑡
2𝑐1

+
𝑐2 ⋅ 𝑑𝑡

2𝑐1
𝑎 𝑡𝑛 + 𝑎 𝑡𝑛+1

1 +
𝑑𝑡
2𝑐1

+ 𝑑𝑡2 ⋅

𝑐2

4 𝑐1
2 𝑎 𝑡𝑛+1 − 𝑎 𝑡𝑛

1 +
𝑑𝑡
2𝑐1

𝑓 𝑡𝑛+1 =
𝑓 𝑡𝑛 ⋅ 1 −

𝑑𝑡
2𝑐1

+
𝑐2 ⋅ 𝑑𝑡

2𝑐1
𝑎 𝑡𝑛 + 𝑎 𝑡𝑛+1

1 +
𝑑𝑡
2𝑐1

𝑓 𝑡 = න

𝑡0

𝑡
𝑐2𝑎1 𝑡′ − 𝑓 𝑡′

𝑐1
𝑑𝑡′

Trapezoidal approximation
to integral equation

Third-order Pade (1,1)
approximate for exponent

Substitution of exponent
approximation into
trapezoidal approximation
to integral equation

Solution, neglecting higher
order terms

CF for Interpolation of 2-Dimensional Table

RPM4000 RPM8000 RPM10000 RPM12000

1000 1.1 1250 1.22 1500 1.35 1750 1.45

2000 1.07 2250 1.2 2500 1.33 2750 1.42

3000 1 3250 1.14 3500 1.28 3750 1.37

4000 0.8 4250 0.9 4500 1.1 4750 1.2

Numbers are not
representative of
any known
component

cf_input
cf_id ‘Texit’ 8021 tab-fun
cf_sai 1.0 0.0 0.0
cf_msc ‘RPM'
cf_arg 1
 1 cf-valu('rpm') 1.0 0.0

tf_input
tf_id ‘RPM' 1.0 0.0
tf_tab 4 ! rpm
 1 4000.00 ‘rpm4000'
 2 8000.00 ‘rpm8000'
 3 10000.00 ‘rpm10000'
 4 12000.00 ‘rpm12000'

cf_id ‘rpm4000' 8011 tab-fun
cf_sai 1.0 0.0 0.0
cf_msc ‘rpm4000'
cf_arg 1
 1 cf-valu('flow') 1.0 0.0

cf_id ‘rpm8000' 8012 tab-fun
cf_sai 1.0 0.0 0.0
cf_msc ‘rpm8000'
cf_arg 1
 1 cf-valu('flow') 1.0 0.0

cf_id ‘rpm10000' 8013 tab-fun
cf_sai 1.0 0.0 0.0
cf_msc ‘rpm10000'
cf_arg 1
 1 cf-valu('flow') 1.0 0.0

cf_id ‘rpm12000' 8014 tab-fun
cf_sai 1.0 0.0 0.0
cf_msc ‘rpm12000'
cf_arg 1
 1 cf-valu('flow') 1.0 0.0

tf_id ‘rpm4000' 1.0 0.0
tf_tab 4 ! flow
 1 1000.00 1.1
 2 2000.00 1.07
 3 3000.00 1.0
 4 4000.00 0.8

tf_id ‘rpm8000' 1.0 0.0
tf_tab 4 ! flow
 1 1250.00 1.22
 2 2250.00 1.2
 3 3250.00 1.14
 4 4250.00 0.9

tf_id ‘rpm10000' 1.0 0.0
tf_tab 4 ! flow
 1 1500.00 1.35
 2 2500.00 1.33
 3 3500.00 1.28
 4 4500.00 1.1

tf_id ‘rpm12000' 1.0 0.0
tf_tab 4 ! flow
 1 1750.00 1.45
 2 2750.00 1.42
 3 3750.00 1.37
 4 4750.00 1.2 (

𝑇𝑒𝑥𝑖𝑡

𝑇𝑖𝑛𝑙𝑒𝑡
= 𝑓(𝜔(𝑟𝑝𝑚), ሶ𝑚(

𝑘𝑔

𝑠
))

CF for Interpolation of 2-Dimensional Table

MELCOR ‘READ’ and L-READ’ Control Functions

• Change actual value of control function thru READ (for REAL-
valued) and L-READ (for LOGICAL-valued) option during a
MELCOR run

• Requires a new file containing name of CF and new value
• New value type must match type of CF (REAL or LOGICAL)

• New file name specified on “EXEC_CFEXFILE” record

• Can be used to simply turn-on or –off a valve without
stopping and restarting a calculation

• Data file is immediately deleted after it is read by the CF

• Similarly, a WRITE type CF was developed to write to a
changedata file.

• Writes the time channel and a number of output variables to
an exchange file

• Does not delete this output file

• Skips writing to the file until the file has been deleted
externally.

Simple Explicit Coupling with Read/Write Control Functions
26

Loop_A Loop_B

EXEC_CFEXFILE B2A.DAT
…

CF_ID 'CFreadTime' 1001 READ

CF_ID 'CFWRITEtime' 971 WRITE
CF_MSC 'CFreadTime'
CF_ARG 1 ! NARG CHARG
 1 CF-VALU('CFreadTime') 1.00 0.0

EXEC_CFEXFILE 'B2A.DAT' - 'CFreadTime'
EXEC_CFEXWRITE '..\LOOPB\A2B.DAT'

EXEC_CFEXFILE A2B.DAT
…

CF_ID 'CFreadTime' 1001 READ

CF_ID 'CFWRITEtime' 971 WRITE
CF_MSC 'CFreadTime'
CF_ARG 1
1 CF-VALU('CFreadTime') 1.0 1.0

EXEC_CFEXFILE A2B.DAT - 'CFreadTime'
EXEC_CFEXWRITE '..\LOOPA\B2A.DAT'

A2B.DAT

B2A.DAT

MELCOR
Loop_A

MELCOR
Loop_B

CF971 (CFWRITEtime) CF1001 (CFReadTime)

CF971 (CFWRITEtime)CF1001 (CFReadTime)

• Reads exchange data
• Receives message for next

B2A.Dat edit
• Deletes B2A.Dat file

• Creates A2B.Dat file if it
doesn’t exist (or pauses until
file is deleted)

• Writes exchange data
• Passes message to Loop A

for when to expect next edit
to A2B.DAT

• Creates B2A.Dat file if it
doesn’t exist (or pauses until
file is deleted)

• Writes exchange data
• Passes message to Loop A for

when to expect next edit to
A2B.DAT

• Reads exchange data if it
exists (or pauses until it is
created)

• Receives message for next
A2B.Dat edit

• Deletes A2B.Dat file

Control Function Ranges

The range is an object that is
defined once in the database and
then can be referenced by one or
more control function arguments.
The range specifies an ordered list
of objects such a control volumes,
COR cells, materials, or components

name type ndim Number
CF_RANGE CVRANGE CVOLUMES 2 30
CONSTRUCT 2
 1 CVTYPE=‘PRIMARY’
 2 DC
REMOVE 1
 1 LowerPlenum

Define a Range (ASCII):

Define a Range (SNAP):

Control Function Ranges

A range can be referenced by control
functions and control function
arguments and may also be used in
specifying input. The hashtag (#) that
precedes range specified for the
volume in the CF argument indicates a
range of control volumes rather than a
single volume.

CF_ID 'CVMass2' 1010 ADD
CF_SAI 1.0 0.00
CFVALR (INITIAL VALUE)
CF_ARG 1
 1 CVH-MASS(#CVRANGE,’H2O-VAP’)
1.0 0.0

Reference a Range (ASCII):

You may need to
add the CV_MASS
control function
argument to the
SNAP database.

Reference a Range (SNAP):

Ranges Used in Input: Vectorized COR_HTR Input

• Reduces number of input records significantly.
• Otherwise input is required cell by cell.

• Unnecessary CF logic required to determine existence of components.

• Difficult to read (QA)

• Input for a cell is scattered among COR_HTR records and multiple CF records

• One example reduced number of records from over 7000 records to under 100

29

Vector Control Functions

• A control function may be defined as a vector of a given size by applying the
CF_VCF record.

• CF_VCF 10 !This control function will have 10 elements

• CF_VCF #MyRange !This control function will have the same dimension as MyRange

• A vectorized control function performs its specified operation, such as ADD,
returning a unique result for each vector element.

• Each element defined from the list supplied by a control function ranges or the similarly
indexed value from vector control functions.

• A vectorized control function returns a range of values that can be passed to other
control functions, either

• As a range, i,e., CF-VALU(MyVectorCF)

• By individual elements,i,e., CF-VALU(MyVectorCF[2])

Type Available Not Planned for Addition

Real Value FORMULA, ADD, MULTIPLY, DIVIDE,
ABS, SQRT, SIN, COS, TAN, EQUALS,
Power-I, Power-R, Power-V, EXP, LN,
LOG, MAX, MIN, L-A-IFTE, ARCSIN,
ARCCOS, ARCTAN, SINH, COSH, TANH,
SIGNI, SIGN, UNIT-NRM, DIM,
LM-CREEP

DER-F, DER-C, INTEG, PID,
TAB-FUN, LAG, HYST, All
TRIPs, All User Defined
Functions

Logical Value L-GT, L-GE, L-EQ, L-NE, L-EQUALS,
L-NOT, L-AND, L-OR, L-EQV, L-L-IFTE

Vector & Scalar Functions with Vector Arguments

• All real vectorized control functions are ‘overloaded’ and the calculated
results depends on whether the control function is declared as a VCF or
not.

𝐶𝐹
→

=

𝑥1

𝑥2

𝑥3

+ 𝑘 =

𝑘 + 𝑥1

𝑘 + 𝑥2

𝑘 + 𝑥3

𝐶𝐹 = ෍
𝑖

𝑛

𝑘 + 𝑥𝑖

𝐶𝐹
→

= 𝑥 • 𝑘 =

𝑘 • 𝑥1

𝑘 • 𝑥2

𝑘 • 𝑥3

𝐶𝐹 = ෍
𝑖

𝑛

𝑘 • 𝑥𝑖

𝐶𝐹
→

=

𝑦1

𝑦2

𝑦3

•

𝑥1

𝑥2

𝑥3

=

𝑦1 • 𝑥1

𝑦2 • 𝑥2

𝑦3 • 𝑥3

𝐶𝐹 = ෍
𝑖

𝑛

𝑦𝑖 • 𝑥𝑖

Vector CF
VCF #MyRange

Scalar CF
No VCF record

cf_id ‘Product’ 100 Multiply

cf_sai 1.0 0.0 0.0000E+00

cf_vcf #MyRange !Absent for Scalar CF

cf_arg 2

 1 CF-VALU(“MyCF”) 1.0

 2 CF-CONST 2.0

cf_id ‘Product’ 100 Multiply

cf_sai 1.0 0.0 0.0000E+00

cf_vcf #MyRange !Absent for Scalar CF

cf_arg 2

 1 CF-VALU(“MyCF”) 1.0

 2 CORcelltemp(#MyRange,FU)

cf_id ‘Sum’ 100 ADD

cf_sai 1.0 0.0 0.0000E+00

cf_vcf #MyRange !Absent for Scalar CF

cf_arg 2

 1 CF-VALU(“MyCF”) 1.0

 2 CF-CONST 2.0

MELCOR Control Function Descriptor

Application of Vector CFs
UTOP – Withdraw of highest-worth CR

• The highest-worth CR withdraws over
51 sec to insert 0.9$.

• The net reactivity initially increases but
is subsequently balanced by the
negative feedbacks after the CR is
withdrawn

• The core power rises to 346 MW in response to the
reactivity insertion but subsequently drops in response
due to the strong negative fuel feedback.

• The long-term power stabilizes at 280 MW

• The maximum intermediate loop heat removal was assumed
to be limited to (280 MW) ~112% of rated

0

50

100

150

200

250

300

350

400

1 10 100 1000 10000

P
o

w
e

r
(M

W
)

Time (sec)

Core power

Fission Power

Reactivity Feedbacks Total core and fission power

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1 10 100 1000 10000

F
e

e
d

b
a

c
k

 (
$

)

Time (sec)

Axial+radial expansion

U-Zr density

U-Zr Doppler

Na void

Na density

CRs in

CRs out

Total

MELCOR Point Kinetics

• Required inputs (cor_pkm0x)
• All relevant feedbacks in dollars [$] – example

uses vector control functions
• Control rod worth for SCRAM [$]
• Any neutron sources [neutron/s]

• 6 delayed-neutron group decay constants
in sensitivity coefficient 1405

• Default developed for a high-temperature gas
reactor (HTGR) (thermal neutron reactor)

• Other reactor-specific point kinetics data
in sensitivity coefficient 1406

• For example, sc-1406(2) is the total effective
delayed neutron fraction, β

• Disable built-in feedbacks (sensitivity
coefficient 1404)

• Default feedbacks originally formulated for
high-temperature gas reactor (HTGR)

cor_sc 6

 1 1404 0.0 1

 2 1404 0.0 2

 3 1404 0.0 3

 4 1404 0.0 4

 5 1404 0.0 5

 6 1404 0.0 6

 7 1404 0.0 7

Feedback Effect SCALE Value

Axial fuel expansion

coefficient (cents/K)

-0.1347 ± 0.0033

Radial grid plate

expansion coefficient

(cents/K)

-0.3376 ± 0.0067

Fuel density coefficient

(cents/K)

-0.2444 ± 0.0044

Structure density

coefficient (cents/K)

-0.0125 ± 0.0021

Sodium void worth ($) -0.4623 ± 0.0165

Sodium density

coefficient (cents/K)

-0.1252 ± 0.0389

Doppler coefficient ($

with T in K)

-1.004 ln(T) + 15.67

Sodium voided Doppler

coefficient ($ with T in K)

-0.776 ln(T) + 13.68

Primary control

assemblies ($)

-22.07

Secondary control

assemblies ($)

-15.77

SFR fuel Doppler feedback example

cf_range RANGEFU cells 1

construct 1 ! Axial Radial

 1 4-13 1-6

First, define fuel temperatures vector
range

cf_id 'Tfu' 4001 formula

cf_sai 1.0 0.0 0.0000E+00

cf_vcf #RANGEFU

cf_formula 1 T

 1 T cor-celltemp(#RANGEFU,fu)

Second, get fuel temperatures

cf_id 'fb-Dopp0' 4014 formula

cf_sai 1.0 0.0

0.0000E+00

cf_vcf #RANGEFU

cf_formula 3 a*ln(T)+b

 1 a -1.004

 2 b 15.67

 3 T cf-valu('Tfu')

Third, calculate feedback

cf_id 'fb-Dopp1' 4015 add

cf_sai 1.0 0.0 0.0000E+00

cf_arg 60

 1 cf-valu('fb-Dopp0')[1] 1.7647E-03

 2 cf-valu('fb-Dopp0')[2] 8.8236E-03

 3 cf-valu('fb-Dopp0')[3] 9.7116E-03

 4 cf-valu('fb-Dopp0')[4] 3.0481E-02

 5 cf-valu('fb-Dopp0')[5] 1.5723E-02

…

 58 cf-valu('fb-Dopp0')[58] 2.4429E-02

 59 cf-valu('fb-Dopp0')[59] 1.2601E-02

 60 cf-valu('fb-Dopp0')[60] 1.3301E-02

! 1.0000E+00

Fourth, apply weighting factors (e.g., volume,
power, power2)

cf_id 'fb_Dopp-ss' 4016 formula

cf_sai 1.0 0.0 0.0000E+00

cf_formula 4 l-a-ifte(t>t0,self,fb)

 1 t exec-time

 2 t0 -10.0

 3 self cf-valu('fb_Dopp-ss')

 4 fb cf-valu('fb-Dopp1')

Fifth, freeze steady state values

SFR fuel Doppler feedback example

cf_id 'del_Dopp' 4017 formula

cf_sai 1.0 0.0 0.0000E+00

cf_formula 2 fb-fbss

 1 fb cf-valu('fb-Dopp1')

 2 fbss cf-valu('fb_Dopp-ss')

Sixth, calculate the Doppler change from
full-power steady state conditions

cf_id 'React' 4029 formula

cf_sai 1.0 0.0 0.0000E+00

cf_formula 8 Axial+Radial+FuRho+Doppler+NaVoid+NaRho+CRout+CRin

 1 Axial cf-valu('fb-FuExp')

 2 Radial cf-valu('fb-RadExp')

 3 FuRho cf-valu('fb-FuRho')

 4 Doppler cf-valu('del_Dopp')

 5 NaVoid cf-valu('del_void')

 6 NaRho cf-valu('del_NaRho')

 7 CRout cf-valu('CR-out')

 8 CRin cf-valu('CRs-in')

Seventh, sum feedbacks
Doppler

Example of High Level Vector Control Function
Electric Heater Element Modeling

• Electrical Heater Elements are frequently used to
simulate nuclear heat generation in fuel rods

• Voltage across bundle and resistance of fuel rods
determines power generation

• Local resistivity dependent on local temperature.

• Temperature feedback determines the power
distribution in the bundle

• MELCOR modeling
• Uses a high level control function that leverages ranges

and vector control functions.

• User specifies a range of COR cells and power functions for
each ring in that range.

• Allows multiple materials for elements (W, Cu, Mo)

• Allows specification of electric losses external to elements

• HTML expanded to include electrical heating element

• resistivity as a function of temperature.

• Video of temperature evolution.

36

Power Supply

Power Supply

𝑅𝑅𝑖𝑛𝑔 𝑗 = ෍ 𝑅𝑖,𝑗 =

𝑁𝐴𝑋𝐿
𝑅𝑖𝑛𝑔 𝑗 𝑐𝑒𝑙𝑙𝑠

𝑖

෍
𝜌𝑖 ,𝑗

𝐴𝑟𝑒𝑎𝑖,𝑗
𝑑𝑧𝑖 = ෍ 𝜌𝑖 ,𝑗 𝑋𝐿𝐵𝑌𝐴𝑖 ,𝑗

𝑁𝐴𝑋𝐿
𝑅𝑖𝑛𝑔 𝑗 𝑐𝑒𝑙𝑙𝑠

𝑖

𝑁𝐴𝑋𝐿
𝑅𝑖𝑛𝑔 𝑗 𝑐𝑒𝑙𝑙𝑠

𝑖

X-sectional Area, Areai,j is calculated implicitly from material
masses and mass densities.

Electrical Heater Element Modeling – ELHEAT CF

• COR_ELPOW 'Qheater’
• ….
• CF_ID 'Qheater' 4016 ELHEAT

• CF_SAI 1.0 0.0
• CF_VCF #RODS
• CF_ARG 2

• 1 CF-VALU(RingPOW) 1.0 0.0
• 2 CF-VALU(ConRes) 1.0 0.0

• CF_ID 'RingPOW' 4014 EQUALS
• CF_SAI 1.0 0.0
• CF_VCF 3
• CF_ARG 3
• !Power applied to each ring with electrical heaters (defined for 3 rings in Range RODS)

• 1 EDF('EDF20',3) 1.0 0.0
• 2 EDF('EDF20',1) 1.0 0.0
• 3 EDF('EDF20',2) 1.0 0.0

• CF_ID 'ConRes' 4015 EQUALS
• CF_SAI 1.0 0.0
• CF_VCF 3
• CF_ARG 3
• !Resistance for each ring with electrical heaters (defined for 3 rings in Range RODS)

• 1 CF-CONST 0.000
• 2 CF-CONST 0.000
• 3 CF-CONST 0.000
•

• ! Range covering RODS
• CF_RANGE RODS CELLS 1000
• CONSTRUCT 3

• 1 1-22 1
• 2 1-22 2
• 3 1-22 3

• Electrical power generation
calculated from high level CF,
Qheater.

• Define a range of cells, RODS,
which encompasses 22 axial
levels and 3 rings.

• For each ring in Range RODS,
define a CF that specifies that
the ring power is obtained from
the vector CF ‘RingPow’ (which
has 3 elements for 3 rings and
pulls from previously defined
EDF files)

• Specify a contact resistance
vector control function (3
elements for 3 rings) ConRes

• In this case, specifies a
constant 0.0 contact
resistance.

• Could be temperature
dependent

Analytical Function Type

• Analytical Functions allow the user to write the operations to be performed on
the input arguments of the Control Function in Fortran code, which is then built
to produce a Dynamic Link Library (DLL) which can be accessed by the main
MELCOR code.

• Uses of analytical CFs
• Analytical function CFs can be used either as input to other CFs or as output to the text

output or plotfile

• Alternatively, CFs can be used within MELCOR to replace existing modelling.
• Control functions are evaluated once within the MELCOR calculation cycle after all packages

are evaluated. Consequently, such values are said to be explicit. For most cases, explicit
evaluations are sufficient. However, when states are changing rapidly, it may be desirable to
have an implicit evaluation.

• For the case of COR heat transfer coefficients, coding has been added to allow updates to the
CF values within the package evaluation, i.e., implicit calculations.

CF_MSC – Miscellaneous Numbers

Optional

(2) UPDATEFLAG

This parameter can take the value ‘OLD’ or ‘NEW’. If the value is ‘OLD’ then the Analytical Function will
NOT be updated within the Package where it is used as a specific application, only outside of that
Package with all the other Control Functions. If its value is ‘NEW’ then the Analytical Function WILL be
updated within that Package, if the Package has been coded to allow it. If the Analytical Function does
not have a specific application then any UPDATEFLAG setting is not used.

(type = characters *3, default = OLD)

• The following example demonstrates the use of CFs in calculating heat transfer coefficients.

Analytical Function Type – MELGEN Input

COR_CNV 4

1 'NU-FORCED-TURB-POOL' 'HT-SHROUD' 'HT-FCD-TURB-SPL’

2 'NU-FORCED-TURB-ATMS' 'HT-FCD-TURB-SPV’

3 'NU-NATURAL-TURB-ATMS' 'HT-TURB-PLATES’

4 'NU-NATURAL-LAM-ATMS' 'HT-LAM-PLATES’

! CF name ICFNum CFTYPE

CF_ID ‘HT-FRC-TURB-SPL’ 5 ACF

! Multiply Add Initial

CF_SAI 1.0 0.0 0.0

! The range associated with the output

CF_VCF #CORSURFACES

! ANALYTICKEY AFAPP

CF_MSC ‘DITTUS-BOELTER’ ‘NU-FORCED-TURB’

CF_ARG 2 ! NARG CHARG ARSCAL ARADCN

1 COR-RE-POOL(#CORSURFACES) 1.0 0.0

2 COR-PR-POOL(#CORSURFACES) 1.0 0.0

! Range covering all present surfaces in all fuelled COR cells

CF_RANGE CORSURFACES CELL-SURFACES 1002
CONSTRUCT 4

1 7-10 1-2 "FU"

2 7-10 1-2 "CL"

3 7-10 1-2 "NS"

4 7-10 2 "FM"

CF Input to define
ranges

COR input defines
control functions to
calculate heat transfer
coefficients

CF Input to define
interface with FORTRAN
DLL

This is an
analytical CF
type

Determines the dimenstion of
the vector of values returned

Arguments passed to the
FORTRAN DLL

Surfaces for FU, CL, NS, and FM

Analytical Control Function Type – External User DLL

function user_evaluate_af(IDIM, AnalyticKey, UdfArguments, IERR, &
 ErrorMessage)

! Arguments
type(TUdfArguments), intent(inout) :: UdfArguments
integer, intent(inout) :: IERR
integer, intent(in) :: IDIM
character(len=*), intent(in) :: AnalyticKey
character(len=*), intent(out) :: ErrorMessage
real(real_kind) :: user_evaluate_af(IDIM)

!Internal variables
real(real_kind) :: ResultArray(IDIM), ReyNum, PranNum

select case (AnalyticKey)

case ('DITTUS-BOELTER')
! NU = 0.023 * Re**0.8 * Pr**0.4

…Perform some error checking…

Argument(1)=UDFarguments%Arguments(1)%Description
Argument(2)=UDFarguments%Arguments(2)%Description

 if (Argument(1)(1:6)=='COR-RE' .AND. Argument(2)(1:6)=='COR-PR') then
 Order(1)=1
 Order(2)=2
 elseif (Argument(1)(1:6)=='COR-PR' .AND. Argument(2)(1:6)=='COR-RE') then
 Order(1)=2
 Order(2)=1
 else
 IERR = 1
 ErrorMessage = 'ACF ERROR: Dittus-Boelter arguments must be RE and PR’
 goto 100
 endif

!Now do the calculation
 do i=1,IDIM
 ReyNum = UDFarguments%Arguments(Order(1))%RealArray(i)
 PranNum = UDFarguments%Arguments(Order(2))%RealArray(i)
 if (ReyNum>0.0 .AND. PranNum>0.0) then
 ResultArray(i) = 0.023 * (ReyNum)**0.8 * (PranNum)**0.4
 else
 ResultArray(i) = -1.0
 endif

 enddo

case ('EXAMPLE VAP’)

 …

CF_ID ‘HT-FRC-TURB-SPL’ 5 ACF

…
CF_VCF #CORSURFACES !Determines IDIM, dimension of ACF

CF_MSC ‘DITTUS-BOELTER’ ‘NEW’

CF_ARG 2 ! NARG CHARG

ARSCAL ARADCN

1 COR-RE-POOL(#CORSURFACES) 1.0 0.0

2 COR-PR-POOL(#CORSURFACES) 1.0 0.0

MELGEN INPUT

External User DLL

• Function user_evaluate_af is
the ‘evaluator’ function for the
ACF type control function.

• Other processing of control
functions is part of the
generatl MELCOR release.

• User compiled DLL module.
• uses interface modules

(resources)
use M_ArgCF, only: TargUDF,
TUdfArguments
use
m_shared_constant_definition
s, only: len_name16
use M_kind, only: real_kind

• Examples to be provided with
MELCOR release

Use of AnalyticKey allows different
code to be processed for different CFs

Dependent Ranges for Vector CFs

• A new keyword for constructing a
range was added to facilitate the use
of vectors in analytic functions. This
new keyword references another
range (i.e., #Range1) since it is
entirely dependent on the other
range for definition. As an example,

• A range was constructed for all
COR cells of interest in the
calculation

• it is required that the CV
volume that is associated with
a COR cell also be provided for
each COR cell associated with
that COR cell range and in the
appropriate order.

• This new construction
keyword generates that range
automatically and guarantees
a one-to-one correspondence.

41

CF_RANGE CORCELLS2 CELLS 10

CONSTRUCT 1

 1 ALL

CF_RANGE CVCELLS CVOLUMES 20

CONSTRUCT 1

 1 #CORCELLS2

• COR cells

indicated by

dashed lines

• CV volumes

indicated by

colors

CORCELLS2 CVCELLS

Cell101 CV_GREEN

Cell102 CV_Yellow

Cell 103 CV_Yellow

Cell 104 CV_Red

Cell 201 CV_GREEN

Cell 202 CV_Blue

Cell 203 CV_Pink

Cell 204 CV_Pink

Viewing a Control Function Network in SNAP

• Create new view by right-clicking
on Views in the Navigator

• Right click on a Control Function
in Navigator pane

• Select add to view previously
created

• Recently, a feature was added
that allows the user to right click
on a drawn control function and
view an ASCII representation of
its equation.

• Version 2.7.1 SNAP plugin

Adding a CF to the HTML Output

Program MELGEN
CF_INPUT !(
CF_ID '3AtmP' 1 EQUALS
CF_SAI 1.0 0.0
CF_ARG 1
 1 CVH-P('3Atm') 1.0

CF_ID '2AtmP’ 2 EQUALS
CF_SAI 1.0 0.0
CF_ARG 1
 1 CVH-P('2Atm') 1.0

CF_ID '1AtmP’ 3 EQUALS
CF_SAI 1.0 0.0
CF_ARG 1
 1 CVH-P('1Atm') 1.0

Program MELCOR
CF_INPUT !(
CF_HTML 4
1 'Pressures' '3AtmP' '2AtmP' '1AtmP’
2 '3AtmP' '3AtmP' PresVec[1] ConstVec[1] ConstVec2[1]
3 '2AtmP' '2AtmP' PresVec[2] ConstVec[2] ConstVec2[2]
4 '1AtmP' '1AtmP' PresVec[3] ConstVec[3] ConstVec2[3]

• Control Functions Defined in MELGEN

• CF_HTML file defined in MELCOR

• Multiple charts specified in table

• Chart title first field

• Subsequent fields provide names of CFs or
plot variables to include on chart

Adding a CF to the Console Output

• EXEC_DISPCF 'EERR' 'COR-REL-ENGY-ERR’
• User Label: Short (<=6 character) label for data to be displayed
• Data Source: Plot Variable or Control Function value to be displayed

If a plot variable is chosen, cycle at which variable was last evaluated is displayed

User
Label Data Source

MELCOR Program Input

End of Advanced Control Function Topics

	Slide 1
	Slide 2: Objective of Presentation
	Slide 3: MELCOR Control Functions (CF) Overview
	Slide 4: MELCOR Control Functions CF Input: Required Input
	Slide 5: MELCOR Control Functions CF Input: Optional Input
	Slide 6: MELCOR Control Functions Built-in Functional Forms
	Slide 7: MELCOR Control Functions Control Function Arguments
	Slide 8: Where To Find CF Arguments
	Slide 9: MELCOR Control Functions Control Function Argument Arrays
	Slide 10: MELCOR Control Functions Composite Functions
	Slide 11: MELCOR Control Functions Use of CF-CONST is best practice
	Slide 12: Flexibility in Constructing CFs Alternate Ways for Calculating Pipe Stress
	Slide 13: Flexibility in Constructing CFs Alternate Ways for Calculating Pipe Stress
	Slide 14: MELCOR Control Functions Using CF to Control MELCOR Output and Time Step Control
	Slide 15: Numbering of CF Determines Order of Evaluation
	Slide 16: Example of CF Intentionally Using a Value From Previous Time Step
	Slide 17: MELCOR Control Functions Input Changes on Restart
	Slide 18: MELCOR Control Functions Input Changes During a MELCOR Run(2)
	Slide 19: Application of LAG Control Function MSR- offgas system
	Slide 20: Lag control function used to smooth pressure signal for valve controller
	Slide 21: Lag Control Function (Implementation)
	Slide 22: Lag Control Function (Solution)
	Slide 23: CF for Interpolation of 2-Dimensional Table
	Slide 24: CF for Interpolation of 2-Dimensional Table
	Slide 25: MELCOR ‘READ’ and L-READ’ Control Functions
	Slide 26: Simple Explicit Coupling with Read/Write Control Functions
	Slide 27: Control Function Ranges
	Slide 28: Control Function Ranges
	Slide 29: Ranges Used in Input: Vectorized COR_HTR Input
	Slide 30: Vector Control Functions
	Slide 31: Vector & Scalar Functions with Vector Arguments
	Slide 32: Application of Vector CFs UTOP – Withdraw of highest-worth CR
	Slide 33: MELCOR Point Kinetics
	Slide 34: SFR fuel Doppler feedback example
	Slide 35: SFR fuel Doppler feedback example
	Slide 36: Example of High Level Vector Control Function Electric Heater Element Modeling
	Slide 37: Electrical Heater Element Modeling – ELHEAT CF
	Slide 38: Analytical Function Type
	Slide 39: Analytical Function Type – MELGEN Input
	Slide 40: Analytical Control Function Type – External User DLL
	Slide 41: Dependent Ranges for Vector CFs
	Slide 42: Viewing a Control Function Network in SNAP
	Slide 43: Adding a CF to the HTML Output
	Slide 44: Adding a CF to the Console Output
	Slide 45: End of Advanced Control Function Topics

