Charge Collection Studies for HV-MAPS

Bundesministerium für Bildung und Forschung

07.03.2024 DPG Spring Meeting Karlsruhe Ruben Kolb On Behalf of the HD HV-MAPS Collaboration Physikalisches Institut Heidelberg

High Voltage - Monolithic Active Pixel Sensors (HV-MAPS)

• Monolithic: Readout and active volume on same chip

[I.Peric, P. Fischer et al., NIM A 582 (2007) 876]

Characteristics:

 Diode realised as deep n-well in p-substrate reversly biased up to -140 V

$$\rightarrow w \propto \sqrt{\rho U}$$

• Fast charge collection via drift in depleted volume

Charge Deposition and Collection in HV-MAPS

- Fast charge in depleted volume collected via drift
- Diffusion in non depleted volume

Time [ns]	Gaussian spread σ [μm]
500	62 ± 2.4
750	75 ± 3
1000	87 ± 3

→How large is the contribution from diffusion?

→Main observables: ToT, cluster size

TelePix1 (Run2021 V2)

- Small scale (5 \times 5 mm²) R&D sensor
- In-pixel electronics contain amplifier and CMOS comparator
- Measurement Idea:
- Compare observables at same HV & configuration for different thicknesses

 \rightarrow Following results focus on: d = 50 μm, 100 μm; ρ = 370 Ωcm

Substrate [Ωcm]	20, 370 , ~8000
Thickness [µm]	50 , 100 , 300, 600
Matrix [Pixel]	29x124
Pixel size [µm²]	165x25
Sensor size [mm²]	5x5

Cluster Size Study @ DESY

- Higher average cluster size with undepleted material
- Second Pixel in the cluster shows a more pronounced tail towards larger delays
- normalized entries normalized events **Delay of Cluster Cluster size** 0.3 0.8 0.25 50 um 50 um, avg. = 1.05 100 um 0.2 0.6 100 um, avg. = 1.140.15 cluster size = 20.4 HV = -15 VHV = -15 V0.1 \rightarrow 50 μ m fully depleted \rightarrow 50 μ m fully depleted 0.2 0.05 -50 200 250 300 350 50 150 2 7 8 100 400 0 1 3 5 6 ts_{pixel} - ts_{seed} [ns] cluster size
- \rightarrow Diffusion is a slow process

07.03.2024

Pixel to Pixel ToT Variations

- Fe55: Monoenergetic x-ray source 5.9 keV → creates ~1634 e-h pairs
 →Similar pixel response expected
- Full sensor ToT has large FWHM

Pixel to Pixel ToT Variations

- Fe55: Monoenergetic x-ray source 5.9 keV → creates ~1634 e-h pairs
 →Similar pixel response expected
- Full sensor ToT has large FWHM
- Large variation in pixel median ToT for Fe55 source is observed →Variation from Chip to Chip
 - \rightarrow Calibration necessary

Amplifier Behavior

• Use of injection circuit: $Q_{\text{Inj}} = U_{\text{Inj}} \cdot C_{\text{Inj}}$ \rightarrow reliable, artificial signal source

- Injection study conducted with a **single** pixel →Logarithmic amplifier response (empirical)
- Non-linear calibration needed

Calibration Method

https://doi.org/10.1088/1748-0221/16/03/P03008

- Calibration in Corryvreckan \rightarrow two new modules developed
- Analysis on per pixel level
- Exponential calibration function

$$C = 1634e^{-} * \exp(a * (ToT - ToT_{\rm Fe}))$$

with a: fit gradient , C: collected charge

- \rightarrow Achieves electron calibration for sensors
- \rightarrow Allows for sensor to sensor comparison

Calibration of Fe55

- Subset of 100 pixels
- Core of the distribution has Gaussian shape and mean 1634 electrons
- Tail towards small charge collections
 - \rightarrow charge sharing

Calibrated ToT Studies @ DESY

- Subset of 100 Pixels
- Clear separation of charge spectra
- Mean electron collection:
 3349 e (50 μm) 4259 e (100 um)
- Expectation from Berger-Seltzer for drift only: 3300 e

Conclusion & Outlook

Conclusion:

- Larger avg. cluster sizes with undepleted volume & delay of cluster
- ~30% more collected charge in thicker sensor
 - \rightarrow Significant contribution of diffusion to the signal is observed!

Outlook:

- Calibration for full sensor
- Allpix² Simulation

Questions?

07.03.2024

Sr90 calculated spectrum

- Low energy electrons do not reach the detector
 - \rightarrow Most probable energy: 0.8 MeV

Cluster size studies Sr90

- Average cluster size increases with thickness
- For large diffusion volumina a constant offset in cluster size is observed

Quality Control of Calibration

- Calibration achieves significant reduction of FWHM close to single pixel FWHM
- Tail to lower ToT is present
- \rightarrow Charge sharing

Quality Control of Calibration

• Correlation between FWHM/Median before and after calibration

Calibration achieves more uniform Fe55 response

07.03.2024

Measurement Setup

- Study charge collection by varying HV with various signal sources
- Compare ToT & Cluster size of DUTs at same configuration & HV
- 90 Sr: 2.28 MeV e⁻ source \rightarrow continous spectrum
- ⁵⁵Fe : Monochromatic x-ray source 5.9 keV
- Testbeam@DESY: 4 GeV electrons

 \rightarrow Following results focus on: d=50 µm, 100 µm, 600 µm $ho = 370 \ \Omega cm$

Calibrated ToT studies Sr90

• Sr90: β^- decay \rightarrow continuous spectrum up to 2.28 MeV \rightarrow MPV ~ 0.8 MeV \rightarrow ~2600 e⁻ from drift

 e^{-}

only estimated!

(Injection Gauging)

2750

4300

4450

Both thicker sensors have larger ToT
 →significantly more charge collection

 e^{-} (⁵⁵Fe Calibration)

2750

3650

3750

e⁻ from drift

2600

2600

2600

Chip Thickness

 $50\,\mu\mathrm{m}$

 $100\,\mu m$

unthinned

Calibrated ToT studies Sr90

- Large shoulder for unthinned sensor
- Huge amount of charge collected
 →Linear Calibration not applicable
- Injection Calibration problematic as well
 →Higher energetic x-ray sources needed

07.03.2024