

Status of Mu3e Phase I Martin Müller for the Mu3e Collaboration NuFact 2023

Charged Lepton Flavour Violation (CLFV) $\mu^+ \rightarrow e^+ e^- e^+$

- Mu3e will measure the BR of $\mu^+ \rightarrow e^+e^-e^+$ with a sensitivity goal of $2 \cdot 10^{-15}$ (Phase I) and 10^{-16} (Phase II).
- Neutral lepton flavour violation was observed with neutrino oscillations
- **Charged** lepton flavour violation (CLFV) is therefore also possible, but with a highly suppressed branching ratio

$$BR < 10^{-54}$$

- \rightarrow any observation of $\mu^+ \rightarrow e^+ e^- e^+$ would be a clear sign for new Physics
- many BSM physics models suggest the enhancement of CLFV

Charged Lepton Flavour Violation Previous Limits

3 "golden" Channels for CLFV searches in muon decays
 limit for µ⁺ → e⁺e⁻e⁺ is at 10⁻¹² and was measured in 1988 by the SINDRUM experiment

History of $\mu \to e\gamma$, $\mu N \to eN$, and $\mu \to 3e$

Two main Background processes for a $\mu^+ o e^+ e^- e^+$ measurement

Internal conversion:

$$\bullet \mu^+ \to \mathrm{e}^+ \nu_\mathrm{e} \overline{\nu}_\mu \mathrm{e}^+ \mathrm{e}^-$$

Accidentials:

• $2x(\mu^+ \rightarrow e^+ \nu_e \overline{\nu}_{\mu})$ + scattering e^-

- suppressed by good momentum reconstruction
- independent of rate

- Overlapping events → suppressed by time and vertex resolution
- relevant at higher rates $(\propto N^2)$

ightarrowFor **signal** events: $\sum ec{p} = 0, \sum E = m_{\mu}, \Delta t = 0$, same vertex

- 6 layers of pixel sensors (t_{σ} < 15 ns)
- 1 T magnetic field in beam direction
- scintillating fibres (t_{σ} =500 ps) & tiles (t_{σ} =70 ps) to increase timing precision
- 10^8 Muons/s decaying at rest in the target
- expected data rate of up to 100 GBit/s

- Phase I simulations for 10¹⁵ muon stops
- Vertex resolution ~0.5 mm
- Momentum resolution < 1 MeV</p>

Detector development for Phase I has finished, we are now constructing detector modules

Installation & Commissioning

- Upgrade of the Beamline to $10^9 \mu/s$ on target starting 2027
- Redesign of the Mu3e detector during beamline construction, Mu3e Phase II:

Subdetectors for Phase I **Mupix Pixel Sensor**

- Novel HV-MAPS pixel sensor (MUPIX), 10 years of R&D
- Fully digital 1.25 Gbit/s LVDS output, 15 ns time resolution
- 2x2 cm. 250x256 Pixel
- 70 μ m thin

- amplification in each pixel cell
- individual threshold for each pixel

Martin Müller

Subdetectors for Phase I Mupix Pixel Sensor

- 6 layers of thin (≤ 70 µm) Mupix Pixel sensors (HV-MAPS)
- glued on kapton flexprints
- provides precise vertex and momentum reconstruction
- production of inner layer modules has started

Prototype of the vertex detector with solid PCBs:

 outer layer production will follow soon

Final design with kapton flexprints:

Martin Müller

Subdetectors for Phase I Scintillating Tiles

- 6272 (0.5*cm*)³ Scintillator blocks
- coupled to SiPMs
- read out by custom ASIC (Mutrig)
- time resolution of $t_{\sigma} = 70 \text{ ps}$

- innermost layer of recurl stations
- each tile wrapped in reflector foil to increase light yield and for optical channel isolation

Subdetectors for Phase I Scintillating Fibres

- three layer ribbons of scintillating fibres, diameter of 250 μ m
- coupled to SiPM arrays
- read out by custom ASIC (Mutrig)
- time resolution of $t_{\sigma} = 500 \text{ ps}$

- suppression of accidental + Bhabha scattering background
- charge identification by ToF for particles with low z-momentum (recurling in central station)

- PCie40 Board for the LHCb / Alice collaboration
- 48 optical in- and outputs
- Control and configuration link to the DAQ software (MIDAS)

- Farm of 12 servers using only commercial hardware
- GPUs to run the track reconstruction
- Fully streaming, no trigger involved before the GPU
- Event selection based on tracker data from the inner station
- Further offline analysis of the full data of the selected time slices

Target and Magnet

Mu3e

- Superconducting Mu3e solenoid Magnet was delivered in July 2020
- fully operational
- homogeneous, stable and precise magnetic field of 1 T is needed for exact momentum reconstruction
- 70 μm thin double cone Mylar target is produced and ready

- 12 kW of Power is needed for the detector
- very tight space for cables and pipes in detector area
- Custom DC-DC converters inside the magnet for detector powering
- 20 A @ 2.1 V
 x 126 DC-DC converter

 Copper bars glued to the beampipe for space efficient power delivery

Copper bars

Beampipe

- construction of a 50 g/s helium cooling plant
- smaller version exists and was tested
- Liquid cooling for timing detectors

beamline optimizations are ongoing,
 7.46 · 10⁷ μ/s on target was achieved 2022 (goal is 10⁸)

Cosmic Run 2022 Detector Prototype

- Prototype: 2 Inner Pixel layers, 1 Scifi Module
- development of tuning procedures, QC tests, cooling tests, ...

Martin Müller

- tested synchronization of detector subsystems
- first track reconstruction in the Mu3e barrel with real data
- exercised building and operating various systems

- Detector development for Phase I has finished, we are now constructing detector modules
- A novel HV-maps pixel sensor and a fast SiPM readout ASIC were developed
- Streaming DAQ ready for 100 Gbit/s
- Infrastructure, powering and cooling systems are under construction
- 1 T Magnet delivered and operational
- Detector installation will start early next year

Installation & Commissioning

Martin Müller