The Mu3e pixel detector: Ultra-light, helium cooled, HV-MAPS based

Thomas Rudzki¹⁾ for the Mu3e collaboration²⁾

1) Physikalisches Institut, Universität Heidelberg

2) Paul Scherrer Institut, Uni Bristol, Uni Geneva, Uni Heidelberg, KIT Karlsruhe, Uni Liverpool, UCL London, Uni Mainz, Uni Oxford, ETH Zürich, Uni Zürich

Physics motivation of Mu3e

• Search for **charged lepton flavor** violation in the decay:

 $\mu^+ \rightarrow e^+ e^- e^+$

In the Standard Model including neutrino mixing, this process is **highly** suppressed with a branching fraction of $\mathcal{B} < 10^{-54}$ (Figure below).

Detector building blocks

Area:

20.66 x 23.18

 mm^2

- MuPix11, 50/70 µm thin, High-voltage monolithic pixel sensor (HV-MAPS)
- High-density interconnects Al-polyimide laminates, electrical serives + mechanical support

Vertex detector & Outer pixel layers

Pixel detector

- \diamond 2,844 pixel chips \rightarrow 182,016,000 channels
- ♦ cooled by gaseous helium
- Vertex detector
 - 2x inner tracking layers
- Radii: 1) 23.3 mm, 2) 29.8 mm
- Sensor thickness: 50 µm
- \diamond 8 + 10 ladders, 6 chips each,

Outer layers

- 2x outer tracking layers

with sensor chips

Thus, an observed signal would indicate the presence of new physics.

Radii: 3) 73.9 mm, 4) 86.3 mm Sensor thickness: 70 µm \diamond 24 +28 ladders, 17/18 chips each Closing the helium volum \diamond 3 stations: flex PCB nnecting 4 la o one module 1x central: around target 2x recurl: upstream & downstream Long tracks curl back \rightarrow 6 pixel hits per track Recurl Central Recurl

Helium as coolant for the pixel detectors

- Signal decay has to be distinguished from: $\mu^+ \rightarrow e^+ e^- e^+ \nu \bar{\nu}$
- Only possible for sufficient momentum resolution.
- Resolution is multiple-Coulomb scattering dominated

little material budget: $\sim 0.1 \% X_0$ per tracking layer negligible scattering in passive part of detector gaseous cooling adds least material

Thermal studies of the Mu3e vertex detector

- Thermal-mechanical mock-up using silicon heater chips instead of MuPix11
- Vertex detector: **2 g/s helium** are provided in two flow channels for cooling
- Outer pixel layers: **16 g/s helium** in two flow channels per each station
- **Measured** temperature difference to gas inlet temperature on each heater chip of the vertex detector **♦** All temperature below 70°C

for 350 mW/cm² (mechanical limit)

Characterity of temperature to power as well as temperature to mass flow

> Temperature to mass flow and temperature to power relation for all chips of a heater ladder in Layer 2

Detector production and QC

Module/detector production verified with silicon heater chips

DFG

- Vertex detector produced manually by Heidelberg at Paul Scherrer Institut (PSI)
- Outer layers produced highly automatized in Oxford & Liverpool

Chip alignment and ladder production tool for the vertex detector

spTAB bonding of an outer pixel ladder in Oxford;

- Working on single chip QC in Heidelberg
- Ladder QC algorithms under development, same building blocks as chip QC
- Testing vertical slice with Ladder QC, all final electrical components in hand
- Finish vertex detector construction in 2023

4th Conference on Charged Lepton Flavor Violation - 2023 - Heidelberg