

EMUG

Dynamic Event Tree analysis for accident sequences in fission and fusion reactors

14th Meeting of the European MELCOR and MACCS User Group (EMUG), 12th-14th April 2023

Department of Astronautics, Electrical and Energy Engineering (DIAEE) - Nuclear Engineering Group T. Glingler M. D'Onorio F. Giannetti

Idaho National Laboratory

D. Mandelli A. Alfonsi

Outline

- Framework
- RAVEN interface for MELCOR
- DET tool overview
- Test Case #1: LOCA analysis for ITER WCLL TBM
- Test Case #2: Cyberattack on a BWR/3
- Ongoing Activities & Future Developments

RAVEN for DET analysis

TARGET

- > Explore possible pathways through which the system can evolve
- Quantify the probability of these scenarios.

APPROACHES

- Branching/failures on demand (i.e., time and field triggers)
- Branching based on failure probability distributions
- Multi-branching scenarios.

BOUNDARIES

- Maximum mission time
- > Rules based on the simulator physic model
- Probabilistic thresholds

RAVEN – MELCOR for DET analysis

RAVEN – MELCOR for DET analysis

Problem definition

MELCOR

EXEC STOPCF – Special Stop Control Function

Optional

This record specifies the name of a LOGICAL valued control function that causes a graceful termination of the MELCOR calculation if its value is .TRUE. This function must have been defined as part of MELGEN input.

(1) ISCF

The name or number of a LOGICAL valued control function.

(type = integer/character*16, default = none, units = none)

Central L-OR included in STOPCF containing

anss 280

Failure @66% CDF

eunss 230

e 180

280

Time

Time

Dynamic Event Tree analysis for accident sequences in fission and fusion reactors

14/04/2023

280 230 180

0

330

Time

Failure @33% CDF

RAVEN – MELCOR for DET analysis

Tools overview

Different procedure between MELCOR version 1.8.6 and version 2.2

> DET for fusion application adopts **EDF for a bridge** between RAVEN and MELCOR

DET algorithm for Fission Applications		DET algorithm for Eucion Applications		
-	DET algoritation of Pission Applications	DET algorithm for Fusion Applications		
Input:	X _i sampled variables & system model	Input:	Xi sampled variables & system model	
Imput: Xi sampled variables & system model START RUN if trip == TRUE: If trip Variable = self.messageReader for each tripVariable: Self.writeBranchInfo (tripVariable) #creates two branches self.modifyInput (tripVariable) RESTART simulation for each branch		START RUN for each X _i : sampledVar = self.ravensample self.writeEDF(sampledVar) if trip == TRUE: tripVariable = self.messageReader for each tripVariable: self.writeBranchInfo (tripVariable) #create two bracksons self.writeEDF (tripVariable)		

System Overview

- TBS in ITER and a compulsory component for demonstrating the future power fusion reactor DEMO
- The main goal of the Test Blanket Modules (TBMs) is to validate the tritium breeding technology,

necessarily vital for the self-sustaining fusion power plants where tritium is a fuel for the fusion reaction

Initiating Event: <u>double-ended guillottine break</u> of the TBM inlet WCS pipe during an ITER plasma burn phase, with resulting loss of water into the Port Cell #16

Dynamic Event Tree analysis for accident sequences in fission and fusion reactors

SAPIENZA Università di Roma

Event	Distribution	Lower Boundary [s]	Upper Boundary [s]	# of values sampled
Ramp Down Trigger	Uniform	3.0	51.0	17
Valve SIC-2 closure	Uniform	7.0	55.0	17

Investigate the influence on **FW temperature transient** and tritiated water **HTO released** from the coolant system.

Dynamic Event Tree analysis for accident sequences in fission and fusion reactors

Main Results

- Amount of HTO released isn't affected by RD procedure time but depends on the SIC-2 valve closure
- Less HTO is released when SIC-2 closure time is close to LOCA rupture
- More effective a SIC-2 closure close to LOCA rupture, and less effective for times > 50s.
- If SIC-2 > 60s no effects on HTO released

SIC-2 compared to HTO released

Main Results

- Both RD and SIC-2 timings influence the max T reached by FW during the LOCA transient
- The max T increases with a delayed RD sequence from the LOCA event

- SIC-2 valve closure delay permits a counterflow of coolant from the WCS inventory to the FW
- > Beneficial effects are seen **only** for RD times < 33s
- ➤A trend reversal for the beneficial effect of coolant is seen at 25s to 10s (interval related to higher RD sequence)

Initiating Event: Hot-shutdown from full power

Dynamic Event Tree analysis for accident sequences in fission and fusion reactors 14/04/2023

12

Safety Systems Implemented

Sampling Strategy

Event	Distribution	Lower Boundary [s]	Upper Boundary [s]	# of values sampled
Cyberattack	Uniform	500.0	6000.0	20
Recovery	Uniform	5500.0	150000.0	15

Discretization Strategy

- Guided exploration
- Restricted Sampling
- Truncation method based on PCT > 1477 K

Time (s)

LIMITING SURFACE

NIVERSITÀ DI ROMA

Investigate a **recovery time limit** for each of the sampled

cyberattack times

Dynamic Event Tree analysis for accident

sequences in fission and fusion reactors

Main Results

SAPIENZA Università di Roma > Binary Classification between PCT scenarios and successfull recovery of the system

PCT

Successfull Recovery

Temperature transient

Dynamic Event Tree analysis for accident sequences in fission and fusion reactors

Main Results

- > Two regions of the input space are identified, thus delineating the PCT region.
- > The Limiting Surface is defined as the **boundary between system success and system failure**

Branch ID	Cyberattack Time [s]	Liquid level [m]	PCT timing [s]
T-2-1	500.0	13.57	6648.16
S-2-1	700.0	13.52	6854.56
R-2-1-1	1000.0	13.64	7351.08
Q-2-1-1	1300.0	13.82	7745.96
P1-2-1-1-1	1500.0	13.95	8075.95
0-2-1-1-1	1800.0	14.21	8619.97
N-2-1-1-1-1	2000.0	14.44	8955.32
M-2-1-1-1-1	2300.0	14.96	9559.87
L-2-1-1-1-1	2500.0	15.0	9848.16
K-2-1-1-1-1	3000.0	14.39	9304.55
J-2-1-1-1-1	3500.0	13.83	8815.34
I-2-1-1-1-1	4000.0	13.85	9417.21
H-2-1-1-1	4250.0	14.22	10037.8
G-2-1-1-1-1	4500.0	14.41	10587.6
F-2-1-1-1-1	4850.0	14.92	11293.9
E-2-1-1-1-1	5000.0	15.08	11330.96
D-2-1-1-1-1	5300.0	14.86	11067.89
C-2-1-1-1-1	5500.0	14.75	10823.52
B-2-1-1-1-1	5800.0	14.66	10512.87
A-2-1-1-1	6000.0	14.21	10332.60

PCT scenarios

Dynamic Event Tree analysis for accident sequences in fission and fusion reactors

Main Results

Dynamic Event Tree analysis for accident sequences in fission and fusion reactors

Conclusions

RAVEN and MELCOR for DET applications has been tested for both fission and fusion applications

> >An external Python script has been developed to reproduce a Liming Surface

 Update the current interface to comply with Python code standards and share on open access the tool

ETEToolkit has been adopted to visually represent the Dynamic Event Tree

Adaptive DET concerning a SA on an BWR Spent Fuel Pool

>Support the development of Multibranch sampling

Next Steps

Dynamic Event Tree analysis for accident sequences in fission and fusion reactors

References

[1] Glingler T., et al., Dynamic Event Tree Analysis of a Severe Accident Sequence in a Boiling Water Reactor Experiencing a Cyberattack Scenario. Available at SSRN in preprint, (2023) <u>http://dx.doi.org/10.2139/ssrn.4376822</u>

[2] D'Onorio M. D., et al., Dynamic Event Tree Analysis as a Tool for Risk Assessment in Nuclear Fusion Plants Using RAVEN and MELCOR. IEEE T Plasma Sci., vol. 50 no. 11 (2022): pp. 4514–4520. https://doi.org/10.1109/tps.2022.3165170.

[3] Alfonsi, A., et al., Dynamic Event Tree Analysis Through RAVEN, INL/CON-13-29344, Idaho National Laboratory, (2013), <u>https://inldigitallibrary.inl.gov/sites/sti/sti/5806439.pdf</u>.

[4] Alfonsi A., et al., RAVEN and dynamic probabilistic risk assessment: Software overview, Safety and Reliability: Methodology and Applications, London: Taylor & Francis Group, (2015), https://doi.org/10.1201/b17399-109.

[5] Mandelli D., et al., Scenario clustering and dynamic probabilistic risk assessment, Reliability Engineering & System Safety, Vol. 115, (2013), <u>https://doi.org/10.1016/j.ress.2013.02.013</u>

[6] Idaho National Laboratory, RAVEN github repository, branch/mattdon/New_MELCOR_Interface https://github.com/idaholab/raven

