Enhance MELCOR safety analysis by adopting RAVEN as a multi-purpose framework for UQ, data analysis, model optimization, and DET analysis.

14th European MELCOR and MACCS User Group (EMUG), April 2023

Department of Astronautics, Electrical and Energy Engineering (DIAEE) - Nuclear Engineering group

> <u>M. D'Onorio</u> T. Glingler G. Caruso

Outline

- RAVEN tool
- MELCOR coupling with RAVEN
- UQ application: SFP in the MUSA project
- Design optimization: Hydrogen recombination system
- Conclusions & Future Developments

RAVEN TOOL

- RAVEN (Risk Analysis Virtual Environment) development has begun in early 2012.
- RAVEN is open-source and can be downloaded from GITHUB:
 - <u>https://github.com/idaholab/raven</u>
- The overall goal was to conceive a tool to enable Risk Informed Safety Margin Characterization (RISMC)
 - Evaluating risk (uncertainty propagation)
 - Understanding risk (limit surface, ranking, sensitivity, data mining)
 - Mitigating risk (optimization)
- Multiple operative systems are supported (Windows, Linux and Mac)
- RAVEN development is performed under a strict Software Quality Assurance process:
 - NQ1 Lvl. 2
 - User manuals and guides, theory manuals, tests documentation
 - Multiple level of peer-review process
 - Automatic verification (testing) (~650 regression tests)

Enhance MELCOR safety analysis by adopting RAVEN as a multi-purpose framework for UQ, data analysis, model optimization, and DET analysis.

MELCOR-RAVEN COUPLING FOR UQ

- The coupling has been realized through a Python Interface integrated into the source code
- The Interface is capable to:
 - 1. Generate a run command for MELGEN and MELCOR executable
 - 2. Convert binary plot file of MELCOR 2.2

Python module used: struct.

 This module performs conversions between Python values and C structs represented as Python strings. This can be used in handling binary data stored in files.

```
In [222]: unpack('I', b'lB\x02\x00')[0]
```

```
Out[222]: 148076
```

```
In [224]: str(unpack('4s', b'TITL')[0], 'utf-8')
```

```
Out[224]: 'TITL'
```


Enhance MELCOR safety analysis by adopting RAVEN as a multi-purpose framework for UQ, data analysis, model optimization, and DET analysis.

MELCOR-RAVEN COUPLING

Open Source: https://github.com/idaholab/raven/pull/1997

Direct access to all PTF variables

Not needed to use an EDF

Possibility to change output variables also at the end of an UQA

Optimization problems

No GUI

Need to create a RAVEN input deck

Enhance MELCOR safety analysis by adopting RAVEN as a multi-purpose framework for UQ, data analysis, model optimization, and DET analysis.

Uncertainty quantification and sensitivity analysis SFP: BASE CASE

- 1535 fuel assemblies. Hot (548 FAs), cold (783 FAs), fresh (204 FAs)
- > 33 Control Volumes and 58 flow paths
- 3 radial rings and 26 axial levels
- The total power of Hot FAs is 1.9MW and Cold FAs is 0.5MW according to specification
- > A total number of 30 RN classes have been simulated

Reactor type: SFP-BWR

Using CN components we experienced code failures as soon as water level reaches the top of the FA.

Routine	Line	Source
cor_corvf_	1202	corvf_NSI.f90
cor corrad	624	corrad_NSI.f90
cor_corrn1	802	corrnl_NSI.f90
cor_cordbd_	232	cordbd_NSI.f90
runstep_IP_physic	232	RunStep.f90
runstep_	103	RunStep.f90
m_melcorprog_mp_m	237	m_MelcorProg.f90
MAIN	19	Melcor_NSI.f90
Unknown	Unknown	Unknown
Unknown	Unknown	Unknown

Using CB the error is bypassed

Enhance MELCOR safety analysis by adopting RAVEN as a multi-purpose framework for UQ, data analysis, model optimization, and DET analysis.

Uncertainty quantification and sensitivity analysis: SFP

Name	Short description	Reference value	Range of Variation	PDF Type
SC1214	Heat transfer to gas/steam mixture by Turbulent Forced Convective Flow in Tubes		LB: 0.0184 UB: 0.0276	Uniform
SC1001(1,1)	Metallic Cladding Oxidation Rate Constant Coefficient		LB: 23.68 UB: 35.52	Uniform
SC1001(1,2)	Metallic Cladding Oxidation Rate Constant Coefficient		LB: 21.36 UB: 32.04	Uniform
SC1001(3,1)	Metallic Cladding Oxidation Rate Constant Coefficient		LB: 70.32 UB:105.48	Uniform
SC1001(3,2)	Metallic Cladding Oxidation Rate Constant Coefficient		LB: 21.36 UB: 32.04	Uniform
SC1001(5,1)	Upper temperature boundary for low temperature range (H2O oxidation)	1850.16 [K]	$\mu = 1850.16$ $\sigma = 25.$	Normal
SC1001(6,1)	Lower temperature boundary for high temperature range (H2O oxidation)	1870.16 [K]	$\mu = 1870.16$ $\sigma = 25.$	Normal
SC1004(1)	Minimum oxidation temperature	1260.66 [K]	$\mu = 1260.66$ $\sigma = 87.5$	Normal
SC1131(2)	Cladding collapse, Maximum ZrO2 temperature permitted to hold up molten Zr in CL		LB: 2300. UB: 2500.	Uniform
SC1132(1)	Temperature to which oxidized fuel rods can stand in the absence of unoxidized Zr in the cladding		LB: 2250. UB: 2750.	Uniform
tssfai	Supporting structure failure temperature	1673.15 [K]	LB: 1473. UB: 1789	Triangular
tnsmax	Non-Supporting Structure failure temperature	1520.0 [K]	LB: 1473. UB: 1789.	Triangular
GAP00_CLFAIL	Gap release temperature		LB: 1073. UB: 1273.	Uniform
chi	Aerosol dynamic shape factor		LB: 1.0 UB: 2.0	Uniform
dmax	Particle diameter, Upper bound		LB: 5.0E-6 UB: 2.5E-5	Uniform
rhonom	Aerosol density		LB: 1000. UB: 4120.	Uniform
fslip	Slip factor		LB: 1.01 UB: 1.51	Uniform
stick	Sticking coefficient		LB: 0.5 UB: 1.0	Uniform
ftherm	Thermal accomodation coefficient		LB: 1.80 UB: 2.70	Uniform
turbds	Turbulent dissipation		LB: 0.001 UB: 0.03	Uniform
tkgop	Gas thermal conductivity / Particle thermal conductivity		LB: 0.05 UB: 1.0	Uniform
deldif	Diffusion boundary layer thickness		LB: 1.0E-5 UB: 8.0E-3	Uniform
FCNCL	Radiative exchange factor for radiation from the canister wall to the fuel rod cladding.		LB: 0.1 UB: 0.2	Uniform
FSSCN	Radiative exchange factor for radiation		LB: 0.1	Uniform

Name	Short description	Reference value	Range of Variation	PDF Type
FSSCN	Radiative exchange factor for radiation from NS to the adjacent canister walls or to fuel rods and debris if canister is not present.		LB: 0.1 UB: 1.0	Uniform
FCELR	Radiative exchange factor for radiation radially outward from the cell boundary to the next adjacent cell.		LB: 0.1 UB: 1.0	Uniform
FCELA	Radiative exchange factor for radiation axially upward from the cell boundary to the next adjacent cell.		LB: 0.1 UB: 1.0	Uniform
FLPUP	Radiative exchange factor for radiation from the liquid pool to the core components.		LB: 0.1 UB: 1.0	Uniform
cl_to_comp	Radiative exchange factor for radiation from clad of a ring to other components ring		LB: 0.1 UB: 0.3	Uniform
rk_to_hs	Radiative exchange factor for radiation from rack of a ring to surrounding HS		LB: 0.5 UB: 1.0	Uniform

Uncertainty Methodology used	Probabilistic method to propagate input uncertainty and model uncertainty
Minimum number of Runs	93 - Wilks confidence formula (two-sided)
Performed Runs	121
Sampling methods	Random Monte Carlo
Requested probability content (β)	0.95
Confidence level (γ)	0.95
Input uncertain parameters	29 parameters
Uncertainty analyses of the FOMs	Min value, max value, mean, median, quantile 5, quantile 95, standard deviation, coefficient of variation, Variance, Skewness, Kurtosis, cumulative distribution function -CDF
Sensitivity analyses used to characterize the relation between the input uncertainty parameters and the	Spearman and Pearson correlation coefficients for both simple correlation and partial correlation, linear regression parameters, and scatter plots of FOMs vs. uncertain parameters (at the end
FOMs	of the simulation and for Pearson higher than 0.5).

Enhance MELCOR safety analysis by adopting RAVEN as a multi-purpose framework for UQ, data analysis, model optimization, and DET analysis.

Uncertainty quantification and sensitivity analysis: SFP

SAPIENZA Università di Roma Enhance MELCOR safety analysis by adopting RAVEN as a multi-purpose framework for UQ, data analysis, model optimization, and DET analysis.

14/04/2023

8

Optimization algorithms coupled with system codes

- Optimization methodologies are used to find the optimal value of a goal function. The process consists of searching for the best-fitted combination of the variables that affect the goal function within a specified set of boundary conditions.
- One of the optimization algorithms embedded in the RAVEN tool is based on the Gradient Descent method
- It is a deterministic approach based on various gradient estimation techniques, stepping strategies, and acceptance criteria
- The algorithm works by estimating locally the gradient of the objective function
- Each new consequent search tends to decrease the gradient value, changing a set of predefined parameters of the objective function. Once all the acceptance criteria are reached, then the algorithm is considered converged
- Multiple initial parallel trajectories are needed to obtain a global solution that overcomes entrapment in local minima

Gradient approximation adopted - Central Difference

For the input space **i** = (**x**; **y**; **z**) and objective function **f**(**i**), then 6 perturbations are chosen, and the following perturbation points are evaluated:

*
$$f(x \pm \alpha, y, z)$$
,
* $f(x, y \pm \beta, z)$,
* $f(x, y, z \pm \gamma)$

The local gradient is

evaluated:

 $\nabla f = (\nabla^{(x)} f, \nabla^{(y)} f, \nabla^{(z)} f)$

$$\nabla^{(x)} f \approx \frac{f(x+\alpha, y, z) - f(x-\alpha, y, z)}{2\alpha}$$

Enhance MELCOR safety analysis by adopting RAVEN as a multi-purpose framework for UQ, data analysis, model optimization, and DET analysis.

Optimization algorithms coupled with system codes: H2 rec.

 $m_{H2} = N \cdot \eta \cdot (K_1 \cdot P + K_2) \cdot \nu \cdot \tanh(\upsilon - \min(\nu H_2))$

Preliminary simulations have been performed installing PAR in each ST assuming 150 kPa as setpoint for trigger of VVPSS-RDs and 90 kPa for the opening of bleed lines, and that each ST is filled with 60% of water.

New design proposal

[ref.] M. D'Onorio et al., "Passive Hydrogen Recombination during a Beyond Design Basis Accident in a Fusion DEMO Plant", Energies 2023, 16(6), 2569; https://doi.org/10.3390/en16062569

Enhance MELCOR safety analysis by adopting RAVEN as a multi-purpose framework for UQ, data analysis, model optimization, and DET analysis.

Optimization algorithms coupled with system codes

- Objective function: Total mass of H2 recombined by both recombiners
- The selected thermal-hydraulic and geometrical parameters to be optimized are:
 - Rupture Disk pressure set point (Pa)
 - Bleeding Line pressure set point (Pa)
 - Liquid Level of Suppression Tank A (m)
 - Liquid Level of Suppression Tank B (m)
 - Expansion Tanks volume (m³)

[ref.] T. Glingler, G. Caruso, M. D'Onorio "Thermal-hydraulic optimization of a proposed EU-DEMO hydrogen passive removal system", Fusion Eng. Des., 2023, https://doi.org/10.1016/j.fusengdes.2023.113729

Enhance MELCOR safety analysis by adopting RAVEN as a multi-purpose framework for UQ, data analysis, model optimization, and DET analysis.

Conclusions & Future Developments

- MELCOR coupling with RAVEN has been completed and used for different applications
- UQ: SFP in the MUSA project
- Optimizer: Hydrogen recombination system
- DET analysis have been performed (next presentation)

- Explore/implement MELCOR-RAVEN machine learning algorithms to support safety assessment of nuclear power plants
- Hybrid optimization algorithms
- MELCOR DET analysis + MACCS for risk quantification

Reference

[1] D'Onorio, M., Giampaolo, A., Caruso, G., Giannetti, F., et. al "Preliminary uncertainty quantification of the core degradation models in predicting the Fukushima Daiichi unit 3 severe accident", (2021) Nuclear Engineering and Design, 382, art. no. 111383, doi: <u>10.1016/j.nucengdes.2021.111383</u>

[2] D'Onorio, M., Giannetti, F., Porfiri, M.T., Caruso, G., "Preliminary sensitivity analysis for an ex-vessel LOCA without plasma shutdown for the EU DEMO WCLL blanket concept", (2020) Fusion Engineering and Design, 158, art. no. 111745, doi: <u>https://doi.org/10.1016/j.fusengdes.2020.111745</u>

[3] D'Onorio, M., Glingler, T., Giannetti, F., Caruso, G., "Dynamic Event Tree Analysis as a Tool for Risk Assessment in Nuclear Fusion Plants Using RAVEN and MELCOR", (2022) IEEE Transactions on Plasma Science, 2022, doi: <u>10.1109/TPS.2022.3165170</u>

[4] D'Onorio, M., et. al "Severe accident sensitivity and uncertainty estimation using MELCOR and RAVEN", (2022) Journal of Physics: Conference Series, 2177 (1), art. no. 012021, 2022, doi: <u>10.1088/1742-6596/2177/1/012021</u>

[5] T. Glingler, G. Caruso, M. D'Onorio "Thermal-hydraulic optimization of a proposed EU-DEMO hydrogen passive removal system", Fusion Eng. Des., 2023, <u>https://doi.org/10.1016/j.fusengdes.2023.113729</u>

[6] Glingler T., et al., Dynamic Event Tree Analysis of a Severe Accident Sequence in a Boiling Water Reactor Experiencing a Cyberattack Scenario. Available at SSRN in preprint, (2023) <u>http://dx.doi.org/10.2139/ssrn.4376822</u>

Thank you!