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• The model orbit of Energy Economics Group of PSI

• Some challenges in hydrogen representation in large scale energy systems models

• Deep dive into the specific challenge of modelling hydrogen infrastructure

• The role of hydrogen in decarbonisation and system flexibility provision
− insights from Switzerland

Outline
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A couple of words about 
Energy Economics Group of PSI

https://www.psi.ch/en/eem

https://www.psi.ch/en/eem


Scope: Improve understanding of energy 
transition pathways and policy strategies 
for realising sustainable long term energy 
systems at the Swiss, European and global 
levels

Method: energy-economic models and 
scenario technique to explore the 
transformation of the energy system

The Energy Economics Group (EEG) at PSI
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The model orbit at EEG
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Sustainable and Resilient energy for Switzerland
• Novel interdisciplinary analysis framework
• Stakeholder engagement

Glance at selected running research projects
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https://sweet-sure.ch

https://polizero.ch

Efficient policies for Swiss pathways towards net-zero
• Efficient policies, their timing and critical contextual influences
• Stakeholder engagement and Dynamic Adaptive Policy Pathways

World Energy Scenarios
• Stakeholder-driven explorative scenarios
• Announced at the World Energy Congress (>4000 delegates, 90 countries)

https://www.worldenergy.org

https://sweet-sure.ch/
https://polizero.ch/
https://www.worldenergy.org/


Power-to-X and hydrogen economy projects
• Close cooperation with PtX pilot projects at PSI
• Synfuels pathways and perspectives for Switzerland and the EU

Glance at selected running research projects
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ESI
SHELTERED
Synfuel-ETH
https://www.psi.ch/en/media/overview-esi-platform

SCENE Swiss Centre of Excellence on Net-Zero Emissions
• High resolution time-dynamic energy systems modelling 
• Holistic GHG emissions mitigation

Bounded rationality in the Swiss energy transition
• Co-simulation of consumer behaviour and social planner perspective
• Clean mobility diffusion and supportive policy designs

https://www.psi.ch/en/media/overview-esi-platform


11 members with highly interdisciplinary 
skills and thinking
− 5 senior staff
− 6 PhD students

The Energy Economics Team
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https://www.psi.ch/en/eem/people

https://www.psi.ch/en/eem/people


Page 9

Hydrogen

It enjoys an unprecedented political and business momentum

It imposes formidable challenges in energy systems modelling community
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EU27 in 2030: 550x more electrolysis than 2022
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Source: IEA, 2022

EU Hydrogen Strategy / RePowerEU plan:
• 2020-2024:  1 Mt H2 from electrolysis ~ 9 – 10 GW*

el

• 2025-2030: 10 Mt H2 from electrolysis ~90 – 100 GW*
el

If electrolysis capacity grows like solar PV of today, we 
can achieve max 70 GWel by 2030

Operational and under construction 
electrolysis capacity in the EU27

* Calculated based on 58-64% utlisation rate, 50 KWh/kgH2 efficiency



Integration is key for hydrogen acceleration
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Supply push effect   
(integration variable renewables)

Demand pull effect 
(decarbonisation of energy 
demand services)

-Industrial process heat
-Space and water heat
-H2 and e-fuels for mobility

Integrated cross-
sectoral policy

approaches

Hydrogen 
economy

Access to multiple markets:
- Electricity
- Gas 
- Heat
- CO2

Heat 
integration: 
fuel cells and 
electrolyser

Revenues 
from by-
products: 
- Oxygen

Low cost
electricity: 
- Generation 

source
- Grid fees
- Annual 

utilisation

C-sources in case of synfuel
production
- Bioenergy
- Industrial point sources



• H2-technology flexibility imposes challenges in energy systems modelling community :

− we need to incorporate a complete economy – production, transportation, storage, 
utilization, environmental and social impacts and costs…

− … for an energy system that does not currently exist

Modelling a H2-economy is a challenging task
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A hydrogen reference energy system
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• Except SMR all other technologies are essentially pre-commercial
• PEM and SMR need high temporal resolution and dispatch constraints in modelling
• H2 applications are in sectors with low data availability: trucks, aviation, shipping, etc.
• Literature on technology costs and prospects is often «confusing»

Cost and performance fundamentals
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Comparison of 
hydrogen production 

cost assumptions 
across 10 TIMES 

models

Source: Dodds et al., 2022



• Unclear which market incentives produce the best outcomes
• Hydrogen can be an international commodity,
• Regulatory policy is in its infancy

Unknown market structure and trade options
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Strongest potential synfuel
producers worldwide

Sources: Perner & Bothe, 2018  ;  WEC 2021



• Hydrogen leakage can create air pollution and GHG emissions 
• Water scarcity impacts are largely unclear at the moment

Unknown broader environmental impacts

Page 16Source: Reigstad et al. 2022

Life-cycle GHG 
emissions of hydrogen 

production GWP100

European CertifHy
initiative low
carbon threshold
36.4 gCO2/MJ H2



• Power sector can be producer and end-user of hydrogen
• Hydrogen provides a different value proposition than battery storage 
• Complex interactions requiring high temporal resolutions and technical details

Interactions with electricity and storage value
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1-cycle per year 365-cycles per year

LCOS for long-term 
storage (left) 

and 
short-term storage 

(right)

Source: Jülch et. al. 2016
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Deep dive into a specific modelling challenge:

Domestic hydrogen T&D infrastructure

The approach used in the Swiss TIMES energy systems model (STEM)



The Swiss TIMES Energy systems Model (STEM)
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• Entire energy system
• Long term horizon
• 288 hourly time steps
− 4 seasons
− 3 days per season

• Age structure of assets
• Full unit commitment
• Infrastructure modelling:
− electricity grids
− gas and H2 grids

• Ancillary markets
• Endogenous RES variability
• Endogenous hourly load profiles
• DSR options
• Agent-based demand modelling
• High Performance Computing

Source: Kannan et al. 2014, Panos et al. 2019, Panos et al. 2021, Kannan et al. 2022



• Pseudo-spatial modelling to avoid increasing complexity

• Infrastructure constraints are an add-on to the model
without changing its original structure or design

• Exogenous allocation of demand and supply to the
infrastructure add-on nodes

• Decisions made by the model need to respect the
infrastructure constraints

• Exploration of the constraints duals to decide their
inclusion into the model and further reduce complexity

T&D infrastructure modelling in STEM: main principles

Page 20Source: Panos et al., 2019



+ 4 nodes for nuclear 
power plants
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• The detailed transmission grid is reduced to N=15 nodes and E=319 bi-directional lines
• Fixed dissagregation of the reduced network injections to the detailed network injections

Example: electricity transmission grid in STEM
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−𝐛𝐛 ≤ 𝐇𝐇 × 𝐃𝐃 × 𝐠𝐠 − 𝐥𝐥 ≤ 𝐛𝐛
Where 𝐇𝐇 is the PTDF matrix of the detailed network, 𝐃𝐃 is the fixed dissagregation matrix, 𝐠𝐠 is the vector with 
injections, 𝐥𝐥 is the vector of withdrawals, and 𝐛𝐛 is the vector of line capacities. The matrix 𝐃𝐃 is not unique

Source: Panos et al., 2019



• Challenge: no previous paradigm, near- and long-term T&D options may differ
• Approach: model a «hydrogen regional cluster» at an initial stage of a take-off of the H2-economy 

T&D H2-infrastructure modelling follows similar principles
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10km

15km
15km

5km

15km

1.2 CHF/GJ

0.9 CHF/GJ

0.5 CHF/GJ

0.4 CHF/GJ

4.2 CHF/GJ

2.3 CHF/GJ

5.2 CHF/GJ

Reference Area Characteristics 
Switzerland density /km2 218
Swiss Plateau density /km2 450
Total Area km2 625
Urban Area km2 100
Urban Area Density /km2 2000
Total Population 281250
Urban Population 200000
Rural Population 81250
Number of cars 149063
Number of households 127841
Urbanisation rate 71%

Reference Area Hydrogen Consumption
H2 consumption in industry (TJ) 285
H2 consumption in buildings (TJ) 1'273

of which urban 905
of which rural 368

H2 consumption in cars (TJ) 738
of which urban 525
of which rural 213

Total H2 needs (TJ) 3'569
Size of H2 production facility  (MW) 340
H2 Production facility output (TJ) 3'569
Operating hours of the H2 production facility (h) 3000

(A): H2 production or storage facility

(B) “turnpike” pipeline connecting 
“reference” areas together

(C) rural area served via trucks

(D) urban area pipelines and 
backbone ring

(E) Pipeline to an industrial zone

Source: Panos and Kober, 2020

Main elements of the H2-regional cluster



Simplified view of the hydrogen RES in STEM

Page 23Source: Panos and Kober, 2020
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Hydrogen integration 
and its role in the Swiss energy system

Insights from several relevant studies with STEM



Challenges in the Swiss transition to 
net-zero CO2 emissions in 2050:
• Limited renewable sources
• Seasonal and daily balancing
• CO2 storage
• Population growth 
• Energy security

CO2 emissions in Switzerland: -23% in 2020 from 1990
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Industry

Services & Agriculture

Residential

Transport

Power generation



• The Swiss Competence Centres for Energy Research (SCCERs) program: 
− 250 MCHF for 2013-2020 to 8 challenges of energy transition 

(biomass, storage, industry, buildings, transport, electricity, grids, society)
• SCCER JASM (5.6 MCHF) is a cross-SCCER activity assessing net-zero pathways

SCCER JASM to assess the Swiss energy transition
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Scenarios*
Energy trade 
availability

Renewables and 
CCS deployment

Society and 
lifestyles

Policies

CLI: core scenario good cost optimal cost optimal
technology and 
building standards

ANTI: fragmented solutions moderate moderate fragmentation local markets

SECUR: energy security low cost optimal pay for security zero net imports

*a subset of the STEM JASM scenarios is shown here, focusing on those discussed in this presentation

Source: Panos et al. 2021
SCCER JASM website https://sccer-jasm.ch

https://sccer-jasm.ch/


Milestones to net-zero CO2 emissions in 2050
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M
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yr
12% Heat Pumps

15% EVs in car sales

3 GW solar PV

2020 2030
35% Heat Pumps

38% EVs in car sales

8 GW solar PV

2050
75% Heat Pumps

83% EVs in car stock

27 GW solar PV

17500 kWh per 
capita TPES

11 TWh hydrogen

9 Mt CO2 captured

Source: Panos et al. 2021

33300 kWh per 
capita TPES

26300 kWh per 
capita TPES



Delivers 40% of the
negative emissions in 2050

Net-Zero is impossible for Switzerland without H2
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Hydrogen complements other storages 
in flexibility provision also at the daynite levels
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Total deployment of flexibility options in 2050

Source: Panos et al. 2021
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«Zero» import dependency and zero CO2 ?
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PJ
/y

r. Electricity
Oil
Gas
Bio-/e-fuels

Net imports

In 2050, hydrogen-based synfuels substitute in SECUR 
more than 90% of the gas imports occurring in CLI

Synthetic fuelsHydrogen 
consumption

Hydrogen distribution
and storage

Hydrogen 
production

H2 from 
electrolysis: 
26 TWh 

H2 from wood 
gasification with 
CCS : 2 TWh 

Total H2 supply : 
28 TWh 

Seasonal 
storage: 2 TWh

Industry: 3 TWh

Freight transport: 
5 TWh 

Passenger 
transport: 5 TWh 

Input to synthetic 
fuels production: 
15 TWh

Synthetic gas
(10 TWhCH4) mainly for 
uses in industrial sectors

Synthetic liquids
(1.5 TWhCxHy) for transport 

*

*
* Residential/Services and injection to gas grid

42 PJ 
e-fuels 
consumption

47 PJ direct
hydrogen 
consumption

Import independence of fossil fuels is 
possible but bio/e-fuels imports are needed



Hydrogen needs climate and renewable policy
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Domestic H2 production is limited and H2 
use is prioritised to industry and transport

Nuclear
Thermal
Wind/Solar
Hydrogen
Net imports

Hydro

TW
h/

yr
.

Net imports
Electrolysis
SMR/ATR with CCS
Wood gasif. with CCS

PJ
/y

r.

Hydrogen supply  in 2050
Electricity supply

22

10

9

70

Slower renewable energy uptake creates a 
supply gap of 11 TWh under net-zero

Source: Panos et al. 2021



• Fuel Cell stack cost 
is a decisive factor 
for accelerating 
hydrogen uptake

• Cost reductions in 
hydrogen supply 
and infrastructure 
benefit more the 
stationary than the 
mobile applications 
of hydrogen

Demand pull more critical than supply push for large-
scale hydrogen uptake
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Net Zero (core 
scenario), 39 PJ

Net Zero + R&D in FC, 52 PJ

Net Zero + R&D in H2 
supply, 45 PJ

Net Zero + R&D in H2 supply 
+ Tax Recycle, 58 PJ

Net Zero + R&D in both 
FC and  H2 Supply, 55 PJ

Net Zero + R&D in FC + R&D in 
H2 Supply + Tax Recycle, 65 PJ
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Hydrogen production in PJ/yr.

Source: Panos and Kober 2020



• Modelling the hydrogen system:
− Increases model complexities
− Needs to account for uncertainty, integrated and high resolution modelling

• H2-infrastructure modelling is computetional demanding and extremely complex
− approximations adopted and derived from the oil and gas paradigms

• Due to H2-regulations infancy modelling has the opportunity to contribute to policy development, 
but faces the challenge of creating and analysing new and unique scenarios

• Many studies confirm that net-zero emissions without hydrogen is not possible for many
geographies in the world, while H2 could also contributes to system flexibility and energy security

• It is unlikely to have a full hydrogen economy by 2050, and to scale-up its penetration:
− we need renewables development and clear climate change mitigation targets
− accelerate fuel cell innovation to create demand pull effects – infrastructure will follow

Conclusions
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Wir schaffen Wissen – heute für morgen

Thank you very much for the attention
Dr. Evangelos Panos
Paul Scherrer Institute
Energy Economics Group
Laboratory for Energy Systems Analysis
e-mail: evangelos.panos@psi.ch

mailto:evangelos.panos@psi.ch
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Comparison of H2-pathways in the three scenarios
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