Warsaw University of Technology

An overview of MELCOR activities at Warsaw University of Technology

Piotr Darnowski

EMUG-2022, 29.04.2022

INSTITUTE OF HEAT ENGINEERING

WARSAW UNIVERSITY OF TECHNOLOGY

Warsaw University of Technology

- The largest technical university (Politechnika) in Poland
- Located in Warsaw (capital city)
- Provides technical education since 1826
- University since 1915
- Top ranked in Poland among 18 universities of technology
- Students ~30 000
- Academic Staff ~2 500
- 20 faculties (almost all engineering)

WUT

Faculty of Power and Aeronautical Engineering

Faculty of Power and Aeronautical Engineering

INSTITUTE OF AERONAUTICS AND APPLIED MECHANICS

EDUCATION AND RESEARCH

Undergraduate courses (B.Sc.)

- Power Engineering
- Aerospace Engineering
- Mechanical Engineering
- Robotics

Graduate courses (M.Sc.)

- Power Engineering
 - also Nuclear Power Engineering
- Aerospace Engineering
- Mechanical Engineering and Machine Design
- Robotics

Institute of Heat Engineering

IHE (ITC)

- Divided into 5 divisions
 - Division of Refrigeration and Energy in Buildings
 - Division of Aircraft Engines
 - Division of Thermodynamics
 - Division of Rational Use of Energy
 - Division of Power Engineering (ZMiUE)
 - Including Nuclear Power Group

Nuclear Power Group

• Responsible for Nuclear Engineering Education and Research

Education:

- Nuclear (Power) Engineering 2-year Master Programme (MSc)
 - Started in 1959, ended 1992 when NPP Zarnowiec was cancelled (1990)
 - Educational programme restarted at WUT in 2006
- Postgraduate courses in Nuclear Energy
- BSc courses related to Nuclear Energy
- PhD programme
- Nuclear activities also at other faculties (e.g. Faculty of Physics)

Nuclear Power Group

Research:

- Focus on Deterministic Safety Analysis
- TH, neutronics, SA
- Light Water Reactor technology
- Accredited by PAA
- Research and Training cooperation with PAA
- Cooperation with different organizations, e.g. PAA, NCBJ, Framatome and other

MELCOR:

- Varying number of users currently ~ 2
- MELCOR main tool which we use in SA related research
- We started with MELCOR in 2013
- This presentation overviews selected MELCOR activities in last 3 years.

ZAKŁAD MASZYN I URZĄDZEŃ ENERGETYCZNYCH POWER ENGINEERING DIVISION

Phebus FPT-1

- Presented @ EMUG2021
- Cooperation with PAA
- Updated model with M2.2.18
- S&U study focused on hydrogen generation
- COR_EUT tested but large portion of inputs failed –we stayed with INT model
- Comparison with Gen-III PWR within NARSIS project

cdf, Samples = 400

P. Darnowski, et. al., Uncertainty and sensitivity analysis of the in-vessel hydrogen generation for Gen-III PWR and Phebus FPT-1 with MELCOR 2.2. doi.org/10.3390/en14164884 P. Darnowski et. al., Study of the material release during Phébus FPT-1 bundle phase with MELCOR 2.2.11954, doi: 10.1016/j.anucene.2020.107700,

Phebus FPT-1

- ➢ Monte Carlo with N=400
- ➢ BE pdfs
- LHS (also SRS)

Candling/Refreezing HTC for Steel

Maximum Melt Flow Rate after Breakthrough

Fractional Dissolution of Steel Oxide in Molten Stainless Steel

14 HFRZSS

15 FSXSS

16 SC1141(2)

- Updated Gen-III NPP model
- Within NARSIS Horizon 2020 Project –
 generic referential EU large NPP with PWR
- Fast running simple RPV
- Study of H2 production S&UA + FPT-1
- LB-LOCA unmitigated
- No Ex-vessel

Interesting issue. First LP model was smaller with only 4 axail levels. It lead to very large temperatures, problems with convergence and large difference in H2 production due to blockages near core plate with H2 prod ~150 kg

- Comparison of two different power profiles
- Top peaked and FPT-1 based
- S&UA with Monte Carlo N=400 + LHS
- also Global analysis by NCBJ for N=3000 but not reported today

P. Darnowski, et. al., Uncertainty and sensitivity analysis of the in-vessel hydrogen generation for Gen-III PWR and Phebus FPT-1 with MELCOR 2.2. doi.org/10.3390/en14164884

- Similar results for top-peak and FPT-like \succ
- Similar to FPT-1 studies \geq

	0.8	0.8	7	PORDP	Debris Porosity
2600 2700 2800 32(1)	0.0 0.1 0.2 0.3 0.4 0.5 #3 FUOZR	0.5 1 1.5 2 2.5 #4 HFRZZR ×10 ⁴	8	FCELR	Radiation Exchange Factors – Radial
	1.6	1.6	9	FCELA	Radiation Exchange Factors – Axial
	1.4 S	≥ 1.4	10	HDBH2O	In-Vessel Falling Debris HTC
	Ê 1.2 E	ଳି 1.2 ଅ	11	SC1001	Zircaloy–Steam Oxidation Correlation
	5 1		12	IRODDAMAGE	Time-at-Temperature Model
•	0.6	0.6	13	TMLT	Interactive Model Melting/Eutectic Temperature
0.04 0.05 0.06 PDLP	0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 #7 PORDP	0 0.05 0.1 0.15 0.2 0.25 #8 FCELR	14	HFRZSS	Candling/Refreezing HTC for Steel
	1.6	1.6	15	FSXSS	Fractional Dissolution of Steel Oxide in Molten Stainless Steel
S. S. C.	1.4 S	1.4	16	SC1141(2)	Maximum Melt Flow Rate after Breakthrough
	Ĕ 1	Ĕ 1.2			
	2 0.8	2 0.8			
	0.6	0.6			
) 1500 2000 H2O	0 1 2 3 4 5 6 #11 SC1001	0.5 1 1.5 2 2.5 3 3.5 #12 IRODDAMAGE			
	1.6	1.6			
	1.4 S	1.4			
2 1/2 mg	Ē 12 Ē	E 12			
	2	2			

MELCOR Field Name

SC1131(2)

SC1132(1)

No

1

2

Description

Fractional Dissolution of Uranium in Molten Zirconium

Zircalloy Melt Breakout Temperature

Candling/Refreezing HTC for Zirconium

Fuel Rod Collapse Temperature

Debris Diameter in Core Region

Debris Diameter in Lower Plenum

- Comparison of LHS and SRS
 - With failed cases we should avoid LHS (see SOARCA reports).
 - We observed little difference between LHS/SRS for N=400
- > Comparison of SRS Wilks (N~100) with SRS Monte Carlo (N=400)
 - BEPU people claim that using LHS with Wilks is wrong
 - Wilks 95/95 margins wider than Monte Carlo 95 bands as expected
 - Sensitivity more difficult, with Wilks for parameters with low p-value we can draw false conclusions

- Comparison of BE pdfs and Uniform pdfs
- ➢ SRS, Wilks with N∼ 100
- Results similar
- For BE more outliers but small effect

Gen-III NPP other activites

- Within NARSIS project other studies
- ➢ Gen-III NPP SBO − in-vessel + ex-vessel phases
- EVMR studies with CMSS
- Containment performance and Source Term studies

Gen-III NPP other activites

> NARSIS

- EXMR studies
- Parametric analysis for CMSS and MCCI options

Parameter	Variable	Base Case#1 Old Defaults	Case#2 New Defaults	Case#3	Case#4	Case#5	Case#6
CAV package emissivity of oxide/metallic/ surrounding	EMISS.OX EMISS.MET EMISS.SUR	0.6/0.6/0.6		0.9	9/0.9/0.9		
Multipliers for surface boiling heat transfer and oxide/metallic thermal conductivity	BOILING COND.OX COND.MET	1.0 1.0 1.0	10.0 5.0 5.0	10.0 10.0 10.0	10.0 50.0 50.0	10.0 100.0 100.0	10.0 200.0 200.0
Mixing between metallic & oxidic components of the debris	MIXING	ENFOR, e	nforce mixing (all debris forms a single mixed layer)				

Gen-III NPP other activites

- > NARSIS
- Containment performance and ST
- Comparison of rapid containment rupture and slow non-rupture leak (like in SOARCA Surry report)
- > I2 and CS ~1 order of magnitude difference 24h after failure

Gen-III coupling with FEM

- > NARSIS
- University of Pisa FEM (MSC©MARC)
- > WUT MELCOR
- UniPi Aging RPV ageing studies

Gen-II studies for SAMG DM Tool

- > NARSIS project
- NPP state database for testing SAMG DM tool (SEVERA) developed by JSI, Gen Energija, APOSS \succ
- ➢ WUT − responsible for MELCOR + NCBJ, VTT
- Gen-II PWR reactor inputdeck with MELCOR 2.2
- Comparison of ~30 different sequences selected by PSA people \succ
- Mainly LB-LOCAs for LP and SBOs for HP variants with different SAMGs

745 745 745 745

SV&POR

PR7

PRT Tank

RWST

1. SV&PORV

HL Break

AFW

Bohanec, M., el. al. A decision-support approach to severe accident management in nuclear power plants. doi.org/10.1080/12460125.2020.1854426 Darnowski, P., et. al, Severe Accident Simulations Dedicated to the SAMG Decision- Making Tool Demonstration, in: NENE-2020 29th Int. Conf. Nucl. Energy f New Europe

Possible MELCOR issue

- Also presented @EMUG2021
- M2.2.9-2.2.21 with PWR plant model and ACC model
- Recalculated for M2.2.21 no change
- SBO + some LOCA; ACC activate, but in short time pressure increase again above setpoint.

M2.2.9

M2.2.11

M2.2.14

M2.2.15

M2.2.18

M2.2.21

- > Later pressure drops again but ACC does not re-activate
- ESF-ACC-PRS and ESF-ACC-REM indicate water presence and proper pressure. P_activate ~ 4.9 Mpa, water ~70 m3

Marviken activites

- 3 small projects
- Critical Flow for TRACE and MELCOR

MARVIKEN:

- Vessel volume: 425 m³
- Vessel length: 24.55 m
- Discharge pipe length: 6.308 m
- Drywell volume: 1934 m³

Nozzle type	D	L	L/D	L1	L2	L3	L4	R	Used in tests
no	mm	mm		mm	mm	mm	mm	mm	no
1	200	590	3,0	0	100	100	100	100	13, 14
2	300	290	1,0	55	150	150	150	150	6, 7
3	300	511	1.7	0	150	150	150	150	25, 26
4	300	895	3,0	55	150	150	150	150	1, 2, 12
5	300	111	3.7	0	150	150	150	150	17, 18, 19
		6							
6	500	166	0.3	0	225	225	250	250	23, 24
7	500	730	1.5	0	225	225	250	250	20, 21, 22, 27
8	500	180 9	3.6	0	181	156	241	250	15, 16
9	509	158 9	3.1	55	156	225	241	250	3, 4, 5, 8, 9, 10, 11

Marviken – MELCOR vs TRACE

- Cooperation: PAA, NCBJ, WUT
- Comparison with TRACE assessment, MELCOR 2.1. assessment (SAND2015-6693R), NUREG/IA-0401, Mosunova @EMUG2013 (same Cd)
- MELCOR 2.2.11932

P. Domitr, et. al, The Assessment of the MELCOR2.2 Critical Flow Models Against MARVIKEN Critical Flow Tests and TRACE v5.0 patch 5 Calculations, NURETH-2019

CFT	Pressure [MPa]	Subcooling [K]	Vessel Water Level [m]	Nozzle Diameter [m]	Nozzle Length [m]	Nozzle length to Diameter Ratio L/D [-]
4	4.97	38.31	17.59	0.509 - 0.609	1.976	3.882
15	5.04	30.42	19.93	0.509 – 0.5	1.966	3.862
21	4.94	33.57	19.95	0.509 - 0.5	0.956	1.878
24	4.96	32.53	19.88	0.5	0.391	0.782

Marviken – Global S&UA

- Cont. of previous work.
- Application of NCBJ's global S&U methodology - BIGUSA
- Use of Sobol indicies.
- Allows to identify sources of uncertainty
- Only for a few parameters: p, Cd, T
- Main motivation to test BIGUSA capabilities.
- Tens of thousands code runs with Python framework developed by NCBJ.
- Comparison of TRACE vs MELCOR for all Marviken tests

Fig. 4.3. Prediction errors for MELCOR code plotted with respect to pressure.

— Mean value from distribution

Fig. 4.4. Normalised standard deviation (Eq. 4.5) of all calculations results for maximal mass flow plotted with respect to hydraulic diameter for TRACE and MELCOR codes.

Marviken – all tests

- MELCOR and TRACE models generated automatically
- with defaults not perfect

M. Spirzewski, et. al., Global uncertainty and sensitivity analysis of MELCOR and TRACE critical flow models against MARVIKEN tests, doi.org/10.1016/j.nucengdes.2021.111150

Marviken – nodalization and SC senstivity study

- Cooperation PAA and WUT
- Models prepared from scratch by different user separately from previous acitvites
- Parametric type senstivity of various S.C. and nodalization
- Most relevant for critical flow: CDCHKF, SC4407(1), SC4407(11), SC4402(1), SC4402(2)
- Results with 8CV similar to 24CVs

M. Włostowski, et. al., A Sensitivity Study of Critical Flow Modeling with MELCOR 2.2 Code Based on the MARVIKEN CFT-21 Experiment. doi.org/10.3390/en14164985

MelSUA Matlab tool for S&UA

- > Matlab open tool to perform uncertanity/senstivity
- Wilks type or Monte Carlo analysis
- ▶ Input as XML file stylized as MELCOR Unc. Tool or M-file.
- Uses MATLAB prob. toolboxes and allows e.g. truncated distributions, SRS or LHS ,etc.
- post-processing with EDF files scripts/files processing
- Currently it is internal tool with no manual, but if there will be any interest I can prepare it rapidly.
- > BETA version available, GitLab repository:

https://gitlab.com/darczu/x-core/-

/tree/master/Modules/MLC_package/SenstivityUncertanityAnalysis

MelSUA Matlab tool for S&UA

- Example input
- Continous and Discrete variables
- MELCOR Input Variable Functionality
- Issue: Failed to use VariableValue record
- Issue: Failed to use CommentBlock and {{{Vars}}} at the same time

Evam	ale Innut Parameters yml X	262
- County		263
: > One	Drive > OneDrive - Politechnika warszawska > git > MY_PROJECTS > M	265
1	K?xml version="1.0" encoding="UTF-8"?>	266
	<struct></struct>	
	<param/>	
	<num>1</num>	
	<name>SC1131(2)</name>	270
	<fullname>SC1131(2)</fullname>	271
	<pre><descrip>SC1131(2): Zr melt breakout temperat</descrip></pre>	ur(2/2
	<pre><comment>Based on PB SOARCA UA (SNL, 2015)</comment></pre>	273 000 274
	<note>Triangular based on PB SOARCA UA; Molte</note>	n 1275
10	<pre><note> Zr Melt Release; Parameter 1 % In Gaun</note></pre>	tt 276
11	<unit>[K]</unit>	
12	<50ARCA>2400 50ARCA	
13	<pre><melcor>2409</melcor></pre>	
14	<pre></pre>	
15		
10		282
10	<pre><wnyspec></wnyspec></pre>	283
17	<type>Continous</type>	284
18	<pdtype>Triangular</pdtype>	200
19	<pdparam>a</pdparam>	287
20	<pdparam>b</pdparam>	288
21	<pdparam>c</pdparam>	
22	<pdvalue>2100</pdvalue>	
23	<pdvalue>2400</pdvalue>	
24	<pdvalue>2550</pdvalue>	
25	<pre><istruncate></istruncate></pre>	
26	<pre><plotrange>2050</plotrange></pre>	294
27	<pre><pre>>2700</pre></pre>	
28	(verif file) /DATA/Fig15 csv(/verif file)	296
29	(/param>	297
20		290
90 21		300
51		301
		302

<pre><pre>cparam></pre></pre>	20	0	
- <num>12</num>	21	1	
<name>SC1001</name>	23	2	
<fullname>SC1001(1,1)</fullname>			
<fullname>SC1001(2,1)</fullname>	23		
<fullname>SC1001(3,1)</fullname>	24	1	
<fullname>SC1001(4,1)</fullname>	2	5	
<fullname>SC1001(5,1)</fullname>	2		
<fullname>SC1001(6,1)</fullname>	20		
<pre><descrip>Oxidation Rate Coefficients SC1001(16,1)</descrip></pre>	2	7	
<comment>Oxidation Rate Coefficients SC1001(16,1), Based on internal r</comment>	· 28		
<pre><note>It is in fact uniform but NonUniform allows using other approach</note></pre>			
<pre><note>0-1 is 1 1-2 is 2 4-5 is 5</note></pre>	23	2	
<soarca>1</soarca>	30	0	
	31	1	
	31		
<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>			
<pre>/twneshiccrete(/twneshicle/twneshicle/twneshiccrete(/twneshiccrete/twneshiccrete/twneshiccrete/twneshiccrete/twneshicle/twneshi</pre>	33	8	
<pre><ndtyne>Piecewiselinear</ndtyne></pre>	34	1	
<pre><pdcs <="" lecencer()="" pacype="" per="" pre=""></pdcs></pre>	31	5	
<pre><pdparam>2</pdparam></pre>			
<pre><pdparam>3</pdparam></pre>	31		
<pdparam>4</pdparam>	3	7	-
<pdparam>5</pdparam>	38	8	
<pdvalue>0.2</pdvalue>	30	a	
<pdvalue>0.2</pdvalue>			
<pdvalue>0.2</pdvalue>	40		
<pdvalue>0.2</pdvalue>	41	1	
<pre><pdvalue>0.2</pdvalue></pre>	4:	2	
<pre><istruncate>No</istruncate></pre>			
<add_data></add_data>	4.	5	
<pre><pre>cpaparam>i</pre>/paparam> </pre>	44	1	
	4	5	
(value)87.94/value)	4		
<pre><value>16610</value></pre>	4		
<pre><value>1853</value></pre>	48		
<pre><value>1873</value></pre>	4		
	50		
<pre>spdparam>2</pre> /pdparam>	1 51	1	Ē

🚽 Variables.dat 🔛

MelSUA Matlab tool for S&UA

It generates PowerShell scripts and folders setup ready for running multiple terminals with batches of calcs.

Generates MATLAB plots with desired output

Vari	ables.dat 🔄 melcor_execute_NARSIS_UNC_PWR_014_SRS_IN1_cases_1t0120.ps1 🖾 📑 melcor_scripts_NARSIS_UNC_PWR_014_SRS_I
	#
	# MELCOR EXECUTION FILE FOR POWER SHELL
	# =====================================
4	\$scripts = 0(
	<pre>"melcor_unc 1; melcor_unc 2; melcor_unc 3; melcor_unc 4; melcor</pre>
	<pre>"melcor_unc 11; melcor_unc 12; melcor_unc 13; melcor_unc 14; me</pre>
	<pre>"melcor_unc 21; melcor_unc 22; melcor_unc 23; melcor_unc 24; me</pre>
	<pre>"melcor_unc 31; melcor_unc 32; melcor_unc 33; melcor_unc 34; me</pre>
	<pre>"melcor_unc 41; melcor_unc 42; melcor_unc 43; melcor_unc 44; me</pre>
10	<pre>"melcor_unc 51; melcor_unc 52; melcor_unc 53; melcor_unc 54; me</pre>
11	<pre>"melcor_unc 61; melcor_unc 62; melcor_unc 63; melcor_unc 64; me</pre>
12	<pre>"melcor_unc 71; melcor_unc 72; melcor_unc 73; melcor_unc 74; me</pre>
13	<pre>"melcor_unc 81; melcor_unc 82; melcor_unc 83; melcor_unc 84; me</pre>
14	<pre>"melcor_unc 91; melcor_unc 92; melcor_unc 93; melcor_unc 94; me</pre>
15	"melcor_unc 101; melcor_unc 102; melcor_unc 103; melcor_unc 104
16	"melcor_unc 111; melcor_unc 112; melcor_unc 113; melcor_unc 114
17	"melcor_unc 0; "
18	
19	
20	=foreach(\$script in \$scripts) {
21	Start-Process powershell.exe "-NoExit .\melcor_scripts_NARS
22	
23	
24	Pause
25	'Finished Calculations'
26	
27	

Warsaw University of Technology

Thank you for your attention!

<u>piotr.darnowski@pw.edu.pl</u>

I⁻aculty of Power and
 Aeronautical Engineering

WARSAW UNIVERSITY OF TECHNOLOGY

Selected Nuclear Energy related papers

WUT publications search engine http://repo.bg.pw.edu.pl/index.php/en/repository

I[:]aculty of Power and Aeronautical Engineering

Faculty of Materials Science and Engineering

Faculty of Civil Engineering

Faculty of Electrical Engineering

ich

l[:]aculty of l[:]lectronics and Information Technology

and Process Engineering

Faculty of Chemical

Faculty of Building Services, Hydro and Environmental Engineering

