
Bachelor Thesis

Institute for Biomedical Engineering, PSI and ETH Zürich,
Switzerland

A Measurement Control Package for
Grating-Interferometry X-Ray Imaging

Laboratories

Lars Lenherr
2021

Supervision: Prof. Dr. Marco Stampanoni
Advisor: Dr. Michal Rawlik

Abstract

Imaging methods are required by medical institutions to get information about the struc-
ture of a human body and its diseases. For this reason the development of grating-
interferometry-based imaging is important for the optimization of imaging methods.

In this project a framework is presented to support the laboratory developments. The
dynamic nature of grating-interferometry-based laboratory developments favours quick,
adhoc solutions and fast iteration time. Therefore the framework improvement is con-
centrated on the interface with the hardware and the measurement control. By analysing
the structure, different components of a setup and the storage system, the possibilities
and limitations of the framework are presented. Based on a grating interferometry setup
the framework is demonstrated and several parts of the including code are explained.

Acknowledgements

My deepest gratitude goes to all people who supported me during my bachelor thesis.

First of all I would like to express my appreciation to my advisor, Dr. Michal Rawlik, for
his support and his useful advices during the whole time at PSI. I enjoyed all the time
during this project and learned a lot from him about how to approach tasks and how to
solve issues.

Further I want to thank my supervisor, Prof. Marco Stampanoni, for the chance to write
my bachelor thesis at PSI and to collect my first experience of a scientific work by a real
project. It was a really great experience for me and will help me a lot in the future.

I would also like to thank Dr. Maxim Polikarpov, for all inputs and a good time during
and besides the work. It’s nice to spend time with you.

Further I thank Simon Spindler for all his support during my time at the PSI and his
advices of different about several aspects of the project.

At last I would like to thank Lionel, for the useful exchanges, which motivated me a lot
during the progress of my bachelor thesis.

Contents

1 Background 9
1.1 X-rays . 9
1.2 X-ray Imaging . 10
1.3 Grating Interferometry . 10

2 Purpose 13

3 Implementation 15
3.1 GitLab . 15
3.2 The Integration of a Device . 17
3.3 The Structure of a Framework . 20

4 Example 23

5 Conclusion 29

6 Attachment 31
6.1 An Example of an Application Script . 31
6.2 The generalized Information Classes . 34
6.3 The self-created Interface of the 2315 Dexela Detector from the Varex

Company . 36
6.4 The Client Script . 44
6.5 The Server Script . 48
6.6 Links of Python Standard Modules . 52

7

1 Background

This chapter introduces the theoretical topics from X-rays up to the aspects of the Talbot
interferometry. In this subject area the framework can be used to control a setup.

1.1 X-rays

X-rays were discovered by Willhelm Conrad Röntgen in Germany. In November 1895,
he used Crookes tubes covered with black cardboard and a fluorescent screen to con-
duct experiments. By observing the screen he realized radiation that passes through
the cardboard during the change of distance between the tubes and the screen. Since
this discovery the research about new radiation, called X-rays, started to grow.[2]

X-rays follow the rules of electromagnetic radiation and are electromagnetic waves. By
traveling through an area they transfer energy by waves and photons. To describe the
behaviour of X-rays the wave model or photons can be used. [2]

X-rays have a characteristic wavelength between 0.01nm and 10nm and as electro-
magnetic waves with their velocity is the speed of light. The corresponding radiation
energy is directly related to the wavelength of the photons. When X-rays, as light,
propagate through a medium, the certain amount of transmitted photon is medium-
dependent.[2]

Every material has a characteristic absorption behaviour which will reduce the amount
of radiation energy. The reduction relates to the attenuation coefficient and leads to a
contrast in an image. This builds the main principle of X-ray imaging. [2]

The logarithm of the attenuation is proportional to the thickness of the material and its
attenuation coefficient. The latter varies between kinds of tissue in the human body,
which makes it possible to visualize their distribution with through-going X-rays. [2]

9

1 Background

1.2 X-ray Imaging

The properties of particle describe the behavior of X-rays when they interacting with
matter, for instance the photoelectric effect or the scattering. In addition the wave model
explains attenuation, refraction or interference. The properties allows to describe the
internal structure of an object.[3]

By passing through matter several aspects of the emitted X-rays get changed, for in-
stance the photon flux or the photon energy. The transmitted X-rays hit the surface of
the detector and results in an image of the passed object.[2]

1.3 Grating Interferometry

In figure 1.1 a setup of a Talbot-Lau grating interferometery can be seen. The Setup
includes a X-ray source, a detector and the interferometer. G0 is an absorption grating
and is located in front of the source. The grating has periodic structure and is usually
made of strong-absorbing materials, gold for instance. This leads to a periodically ab-
sorbing and transparent behavior. If the spatial coherence of the beam isn’t high enough
the G0 have to be used to split the source into micro-sized sources which are lined up
periodically. They are individually coherent, but mutually incoherent. Sources which
provide enough spatial coherence, for instance synchrotrons or microfocus sources, do
not require a G0.[3]

Figure 1.1: A Talbot-Lau Interferometry Setup

10

1.3 Grating Interferometry

To split the beam another required grating is G1, placed directly after the sample. G1 is
also periodically structured but is different to G0. The phase grating, G1 is often created
of gold, too ,but a much thinner layer than G0 and shifts the phase of the X-ray wave
for a certain value, which is usually π. This results in a periodic phase modulation with
high intensive fringes. This effect is base on the Talbot effect, for this reason the name
is given by Talbot interferometer.[3] The optical Talbot effect can be seen in figure 1.2.
[4]

Figure 1.2: The Talbot Carpet. zT: The Talbot Distance, x: The transverse Direction, z:
The Downstream Direction, λ: The Wave Length (adapted from [4])

The foundation of the grating interferometry is the diffraction of a periodic object. The
downstream of gratings results in an interference pattern, which is referred to as the
Talbot effect. If coherent radiation illuminates a periodic structure, e.g. a grating with
transmitting slits, the wave field becomes the same as the complex transmission func-
tion of an object at a certain distance downstream. The complex transmission function
is determined by the different properties of the object. The distance is referred to as the
Talbot distance.[3]

As the object interacts with the X-rays, the attenuation, refraction and scattering of the
beam change the interference of the pattern.[3] The attenuation can be determined by
the photoelectric effect, the coherent and incoherent scattering, which are depending
on the photon energy and the material. The refraction leads to a direction change of
photon transmission at the air-object interface related to the different velocities of X-ray

11

1 Background

in materials.[1]

These interactions results in a reduced fringe amplitude by scattering and a fringe shift
determined by refraction and a reduction of the intensity because the attenuation. [3]

A detector can efficiently measure the changes of the interface pattern, which is based
on absorption, phase and scattering signal. The pixels of the detector can’t measure
directly the fringe-shift, because the pixels are usually larger than the spatial period of
the fringes. For that reason a third grating is located between G1 and the detector. The
grating is an absorption grating so-called G2 has the same characteristics as G0 but
has the same period as the intensity fringes. It distributes the intensity in a way that
a pixel has high respectively low intensity. So fringes are attenuated or transmitted.
The distance between the gratings can be determined by the fractional Talbot order.
This means that when a maximum occurs during a downstream of G1, the distance is
so-called fractional Talbot order. [3]

To analyse the interference pattern, phase stepping of the grating G2 can be used. For
this reason the grating moves several steps over one period with equidistant lengths in
transverse beam direction. The intensity curve becomes a convolution of the interfer-
ence after the transmission and this can be measured by a detector. [3]

12

2 Purpose

The aim of this project is to create an adaptable framework for laboratory development
of grating-interferometry-based imaging, concentrated on the interface with the hard-
ware and measurement control. The framework should provide a simple integration of
devices and a flexible base on which an application for a specific grating interferometry
setup can be created. This framework will help to set up a grating interferometry system
and to document the measurements.

Laboratory devices use many different Application Programming Interfaces, as APIs.
They enable the connection and the control of a device. An API is provided for only
some programming languages, might be a considerable effort to integrate a device.

At the same time the dynamic nature of the laboratory developments favours quick, ad-
hoc solutions and fast iteration time. Building an intermediate layer would homogenise
the way to control the devices reducing the overhead of implementing a device in a
setup. Furthermore, an established and well-documented interface makes it possible to
separate the task of the technical integration of a device from the use in the laboratory
context. It is very much like the way it is done in synchrotron beamlines.

A user-friendly python interface is based on a device class. A class holds the device-
specific save instructions and provides the functionality via functions. These enable the
communication between the computer and the device, which is needed for measure-
ments, through the python interface. So an application can change the settings of a
detector by using the functions provided in the corresponding interface.

A device and the corresponding interface build a package, which can be used from
other scripts. As a main application a script can be created to import all classes of
the device interfaces and therefore a setup is controllable. Based on the interfaces the
script includes several functions which are defined by a user and can execute measure-
ments.

A main application can be build in many different ways, in this context the main applica-
tion is a python script. An other possibility is to use a Jupyter Notebook. With the main
application a user can comfortably control all devices which are connected to it.

As an example, a measurement can execute a simple projection with a detector dur-
ing an X-rays emission from a tube. So the function consists of several commands
to prepare and activate the tube and the detector on the right time to get a good im-
age. To know if the measurement started and terminated successfully, somewhere in

13

2 Purpose

the measurement-function needs to be a command which takes note of the current
process.

For a documentation about measurements, information about the success, the date,
the start and end time are essential. Normally the information part always consists
of a specific part which depends on the devices of the setup and a non-specific part
which includes all general information about the setup. The specific part is located in
the application and can provide the model number, the settings and so on. On the other
hand the unspecific part can be located outside of the application and normally notes
the current measurement number and the information if the measurement terminated
successfully.

The separation between the application and the non-specific part results in a better
flexibility of the framework. The class can be imported by the main script to provide the
functionality. Therefore a user doesn’t have to write a new one. Based on the separated
information part a specific one can be build. The part based on the devices have to be
created by a user for a new main script.

To build a framework for a setup, the user has to connect the hardware to the computer,
import the interfaces from each device in the main application and to create his own
measurement-functions. If a setup has to integrate a device the measurement function
in the main script has to be modified as well.

14

3 Implementation

In this chapter the functionality and the structure of the developed framework will be
discussed. Based on example scripts, the advantages and limitations will be shown
and explained. Because of space reasons only small pieces of the program code will
be shown in this chapter, but the whole program code is available in the attachment.

3.1 GitLab

GitLab is a framework for hosting git repositories. An other advantage of "GitLab" is to
integrate different projects in other project. This way a project can be easily integrated
and used in one or more projects without restrictions.

GitLab contains only git-repositories. A repository can be a collection of sub-repositories
and scripts, which makes up a project. The following Image shows an example of a git
repository, which contains a main script and several sub repositories, called "measure-
mentclasses" and "dexdetector".

Figure 3.1: A git repository

A repository can easily integrate other projects as sub-repositories, make use of it and
can add self-created scripts. So a user can build his own project on different other
projects. In figure 3.2 an exemplary structure of four repositories are shown.

15

3 Implementation

Figure 3.2: Possible Structure of Repositories

16

3.2 The Integration of a Device

3.2 The Integration of a Device

In this section the integration of a device and his corresponding framework will be ex-
plained based on an example of a Varex 2315 Dexela detector.

A device needs that interface to enable the connection between the control application
and the devices itself. Most companies sell devices with a corresponding documenta-
tion API. To make use of the "Dexela" detector an interfaces class is written to simplify
the use of the given interface of the company. The structure is shown in figure 3.3.

Figure 3.3: Interface-Device Connection

The detector has five settings which are relevant to acquire images, these are: the
exposure time, the well mode, the binning mode, the trigger source and the exposure
mode. These settings will have impact on the quality of the image.

The class is called "DexDetector" and defines all functions and the initialisation of the
detector. An object of this class is initialised with standard settings to acquire a sin-
gle image. These provide a fast and uncomplicated use of the detector for taking an
Image.

If other settings are needed there are set-functions which can change the settings to
the preferred values. To verify that the right values are adjusted or just to get the
information about the actual settings, several get-functions are defined which read the
current values out of the detector. Every function prints the information in the terminal
by calling it.

Next to all set- and get-functions there are four functions to acquire one or more images
in different ways. The functions can be found in the attachment, but won’t be explained
in detail. The detector class provide four different functions to get images from this
detector.

17

3 Implementation

Normally the functions and processes which allows the creation of application that ac-
cess the features of a device aren’t available for all programming languages. Some-
times even for very specific versions, as seen in figure 3.3. Therefore the homogenisa-
tion happens by providing a class-based interface in python 3.

Since the interface of the company is python 2.7, a binary version only compatible with
a version older than the one of used setup framework. Therefore, two scripts are built to
communicate with each other using ZMQ sockets. Sockets make it possible to combine
different python versions together.

Figure 3.4: A Socket Connection between two Scripts

The first script is connected to the interface of the detector and the program itself has
the behavior of a server. This allows other programs to connect to it via a port which is
defined in the server script. Programs which connect to the server are called clients.

Through the server-client connection data can be send from the client to the server and
back to it. The server will look at the received message and if it’s a valid command,
it will call the right detector-function. This way a message from a client can reach the
detector. After a call the server will sent the information about the function back to
the client. So client is updated if the server has received a message and if the called
function has executed correctly.

Figure 3.5: The Distribution of the Python Versions for a Main Script written in Python 3

The client script consists of a class which provides functions to send strings to the
server. For each defined funcion of the "DexDetector" class, there is one function de-
fined in the client script for reaching the detector via the server. The class in the client
script is called "TranslateDet".

18

3.2 The Integration of a Device

The main script of the setup imports the "TranslateDet" class to get a connection via the
server to the detector. This is a useful way to create a compatibility between different
versions of programming languages.

For instance if a user wants to know how long the exposure time is set in the settings
of the detector, he will create an object of the "TranslateDet" class and use the get-
function of the exposure time, which is showed in figure 3.6. Since all functions of the
client script afford the server script to send an answer back, the receipt part is defined
out of the functions where it can be used independent from the functions.

def get_exposure_time(self):
send(’get_exposure_time ’)
return

Figure 3.6: The get-Function of the Exposure Time from the Client Script.

This get-function will send the string "get_exposure_time" to the server. As the string
reaches the server, the string is verified if this is a valid command. Since all function of
the "TranslateDet" class only send valid strings, the server will find the corresponding
function call.

In figure 3.7 the code can be seen, which the server needs to check if the message
is valid. Since the message is valid the "det.get_exposure_time"-function get called to
define the string "s" and the bool "reply" get set to true.

if(message [0] == ’get_exposure_time ’):
s = (’exposure time: %s’ %(det.get_exposure_time ()))
reply = True

Figure 3.7: The Check from the Server if the received Message is valid

The bool "reply" means that information from the server has to be sent back to client.
Only get-functions contains this bool because set-functions doesn’t have to return infor-
mation about the values of the detector, since the values which will be set are known.
This is worthwhile keeping the work of the computer as small as possible.

The command "det.get_exposure_time" calls the function in figure 3.8. This function is
in the self-created interface of the "Dexela" detector. The function has a connection to
the detector through the interfaces from the company and return the information.

There are other aspects which are important to know about the server-client connection.
The server can only make one connection at the same time, if a second client connects
to the server, the first one will lose the connection. This won’t affect the use of the
detector as one setup will normally be controlled by one user. This is a solution to
control the detector from another script with an other python version.

19

3 Implementation

def get_exposure_time(self):
exposureTime = self.detector.GetExposureTime ()
print("exposure time: %s" %(exposureTime))
return exposureTime

Figure 3.8: The "get_exposure_time"-function from the self-made detector class

3.3 The Structure of a Framework

A setup can have several devices like an X-ray tube, a detector and different motors.
To include the devices into the framework of a setup the corresponding interfaces have
to be integrated. The interfaces are required to enable the connection and to access
the control of a device. They can consist of translation scripts and a device class. The
translations scripts are only needed if the versions or the languages of the interface and
the framework are different.

In the device classes are the definitions of all functions which provide the application.
Python classes are simple to import in other scripts. As a device interface is indepen-
dent from other scripts except the corresponding translation scripts, the interface and
the translation scripts are located in a git-repository.

Figure 3.9: Example of the 2315 Dexela Detector Repository

The repository in figure 3.9 can be imported from other repositories. So the creation of
a framework is supported by the simplified interface integration of the repositories. This
leads to quick ad-hoc solutions for a setup.

To create a framework for a setup a git-repository can be built which adds device inter-
faces as sub-repositories. Next to the sub-repositories a main script has to be created.
Since the interfaces are defined in classes, they can be easily imported in the main
script. So the class and the functions of the interfaces can be integrated and used in
the main script. As seen in figure 3.10 repositories can be shared between setups, for
instance they can be integrated in multiple main scripts.

20

3.3 The Structure of a Framework

Figure 3.10: A Framework Structure

The main script acts as the application of the framework and therefore a setup can be
controlled. Several parts are defined in the main script to provide the functionality of the
framework. There are the layout, the management of the devices, several information
functions and measurement functions defined. The main script will help the user to
control the setup in preferred ways.

The layout of a framework depends on the preferred type of the application. For exam-
ple, the framework can be used in a command line. All definitions of required functions
are written in the upper part of the main script and at the end of the script a command
will executed which opens a python application in the command line.

To use the function of the interfaces in the python application, the objects of the re-
quired devices classes have to be created. The main script needs a management of
the devices for this reason.

Normally there are more devices connected to the framework as needed for the mea-
surements, because several devices are used interchangeably, swapping an X-ray source
for instance. The management limits the devices to the required ones, therefore the
work of the computer will be reduced and the overview about the devices becomes
better.

A possible way to build a management is to use the "argparse" standard module of

21

3 Implementation

python. The module provides the possibility to define several arguments in the main
scripts. These arguments can be added by executing the main script to create and
initialise the object of the required interface classes. To create an overview about the
objects the "logging" standard module can be used to print a message if one is built.
So the management provide the initialisation of the devices which will be used for the
measurements.

To execute a measurement a function can be defined in the main script. So the func-
tion includes all command to prepares the devices and to carryout a measurement. A
function has to be structured as the measurement itself.

An example of a possible measurement can be an acquisition of an image with a detec-
tor during X-ray emission. A function has to be structured as the measurement itself.
This can be called for acquiring a single image, the commands for the preparation of
the devices are executed as first. So the devices get the preferred settings, then the
detector acquires the image and save it on a chosen location. A call of a measurement
function execute a chosen process.

To document measurements during the process, information function have to be de-
fined. Normally a documentation contains the information about the success, the date,
the start time, end time and used devices. So the documentation is independent of
the device except the information about the devices itself. A separation of the indepen-
dent part leads to use it in frameworks for any other setups and the documentation part
becomes more flexible.

The part about the device can be based on the separated one and has to be written in
the main script by a user. Using these structure will result in a certain flexibility and a
well-documented output.

The code to provide the storage organisation has different functions which create a
folder structure in the location which can be defined. Therefore the folder on the same
stage as the script has the name of the year and the subfolder in in which the output of
the measurement are stored has the name of the actual month. As output the acquired
image, logging and meta files will be saved in this location. The two files provide the
device independent measurement information.

In this way the functionality of the documentation part is unchanged, but the framework
becomes more flexible and the integration of a device simpler. As a second advan-
tage it’s simpler to create a new application for a new setup, because the independent
documentation part can easily get imported.

So the structure of the framework is created to provide a comfortable integration of
devices and a good flexibility which supports users in building a new setup.

22

4 Example

This section is about building an example script to use a simple setup including just a
detector and a X-ray source. The detector is controlled with the program of the main
script which acts as the framework. For simplicity the X-ray source is separated from
the framework and is controlled by other programs. Therefore one device has to be
integrated in the system and the corresponding interface in the main script.

There are several python standard modules in the main script which are used and won’t
be explained in this project. The link to documentation can be found in the attachment.
The main script build a git repository which import the repository from the detector as a
sub-repository. Therefore the interface of the detector is imported and the functionality
of it can be used in the main script.

The main script has four different parts. The first part is about the layout of the frame-
work, the second part is created for the management and initialisation of the devices,
then the part to save the information of the measurements and the last part includes
measurement functions. The main script has to be created from a user to control a
specific setup.

The layout part refers to how a user wants to use the framework, how and where the
information about the measurements are saved. This file is build to use it as framework
in a command prompt. Therefore the script can be called in a terminal, then the com-
puter go through the definitions of the program and at least it opens a python terminal in
which all defined functions of the main script and all imported functions can be used.

Figure 4.1: The Layout of the Framework

To build the management of the devices, the standard python "argparse" module is
used. In the main script several arguments for devices can be defined. A user can
give the arguments to the executive command of the main script to include the required
devices. Figure 4.2 represents an example the definition for an "–dexdet" argument of
a detector.

23

4 Example

Then if the argument of the detector is given to executive command, there are vari-
ous parts defined to initialize the devices and start the script to translate the different
python versions to each other. When the computer start running the script the terminal
looks like figure 4.3 and waits for additional commands. So the devices can easily get
activated at the start of use.

parser.add_argument("--dexdet", action= "store_true",
help="TranslateDet")

if args.dexdet:
stored_image_path = ’C:/Users/gac -gi_bct/Desktop/example/picture ’
subprocess.Popen (["C:/Users/gac -gi_bct/Anaconda3/envs/py2/python.exe"
,"C:/Users/gac -gi_bct/Desktop/Setup/Detector/DexDetector/server.py"])
dexdet = TranslateDet(stored_image_path)
logging.info("Connected to the Dexela Detector 2315")
logging.info("CREATED OBJECTS: dexdet.")

Figure 4.2: The Definition of the Detector-Argument (upper part) and the Commands to
initialise the Detector if the Argument is given (lower part).

From this point a user can call every function of a device interface. As seen in figure
4.3 the detector prints an overview of the initialised values in the terminal. To transport
the information from the detector to the framework a connection is required. The python
versions are different, for this reason a server and a client script are created. A server
and a client script are written to translate the different python versions to each other.
So the framework and the detector can communicate together. The terminal includes
a reply of the server as well, which can be seen in figure 4.3. This reply includes the
information if the initialisation is completed and which port is used for the server-client
connection.

Figure 4.3: The Termination of the Main Script with a given Argument

To save various information about a measurement, a class is created which can be
used for different setup. The class is based on the "logging" standard module and is
used to save the date, the system number of the measurement, the start and end time
of the measurement. The information is written into a log file.

24

The "yaml" module is used to create a meta file, which stores the type of the measure-
ment and if the measurement completed successfully. this leads to a simple overview
about the done measurements.

Figure 4.4: A log-file crated by a measurement with a detector

Figure 4.5: A generated yaml-file including the type of a measurement and the success

The measurement class is separated from the main script. The main script imports the
class to modify it based on current setup. For example there is the information about
the detector saved as dictionary. The script can be seen in the attachment.

The last part of the framework consists of measurement functions. To execute a single
image acquisition, a user can define a function to prepare the devices and to carry out
the process. Figure 4.6 shows the definition of measurement function from the example
script. Therefore a "B45Measurement"-object is created with the type as "simple_snap"
and the storage path. The commands "m.start()" and "m.stop()" save the information
about start and end time of the measurement. The part between those commands
executes the acquisition of one image if the argument of the detector was given.The
outputs of one measurement are an image, a log-file and a meta file.

def Simple_snap ():
m.start()
if args.dexdet:

dexdet.change_path(m.get_path ().get_measurement_directory ())
dexdet.AcquireSingleImage ()

m.stop()
return m.name , m.success

Figure 4.6: An example of a measurement-function

After calling this function the terminal ends reaches the stage as shown in figure 4.7.
There all information about the measurement and the detector settings can be seen.

25

4 Example

Figure 4.7: The Terminal after calling a Measurement Function

A user can repeat this process as long as preferred. After the function call the output
consists of a meta file, a logging file and the acquired image. to save the files the
measurement class creates folders in a certain path to save the log and meta file. In
addition the storage path of the detector can be changed to the same directory as seen
in figure 4.8. So the three output files are stored in the same location.The image in
of figure 4.8 is shown in figure 4.9 where a chocolate bar with rice crisps is used as a
sample. If the measurements are finished and the framework isn’t used anymore, the
command "exit" can be executed. This will closed the script.

The framework can include every device with a corresponding interface. If the setup
changes the measurement-functions, the argument part and the information part has
to be updated. In addition, the measurement class provides a file-naming scheme and
a nested storage framework.

26

Folder PATH listing for volume System
Volume serial number is 5E05-6936
C:.
| output.txt
|
\---Detector

| main.py
|
+---2021

+---04
| +---20210429_160510983831
| | 20210429_160510983831.log
| | 20210429_160510983831.yaml
| |
| +---20210429_160535878372
| | 20210429_160535878372.log
| | 20210429_160535878372.yaml
| |
| +---20210429_161220578771
| | 20210429_161220578771.log
| | 20210429_161220578771.yaml
| |
| \---20210430_134953690058
| 20210430_134953690058.log
| 20210430_134953690058.yaml
|
\---05

\---20210525_161056478868
20210525_161056478868.log
20210525_161056478868.yaml
Image1_3072x1944.smv

Figure 4.8: The Folder Path Tree of the Information Files and the Image

Figure 4.9: An acquired Image of a Chocolate Bar including Rice Crisps

27

5 Conclusion

A framework can be used to control a grating interferometry setup. For laboratory de-
velopments quick ad-hoc solutions, small iteration times and organised storage system
are desirable. To support the development the framework has to simplify the integration
of devices, hence it sometimes results in a huge effort.

This means that the effort to integrate devices has to be as simple as possible with-
out limiting the functionality of the framework. Therefore the separations of setup-
independent part results in certain flexibility of the framework, which provides a sim-
plicity by a device integration. The separations can be made without any impact on
the functionality, since all device dependent parts are saved in a main script. The main
script provides the application of the framework.

The main script provides the functionality of the framework which will be designed by
a user to create an application of the setup. By defining measurement functions the
execution of measurements can be simplified and adapted as preferred. To proof the
measurements executed successfully and to have an helpful overview about the ac-
complished measurement, a documentation about it is created. Since a documentation
is based on setup independent parts, a separation leads to an uncomplicated creation
of a new setup-application.

To control a setup with the framework, a user has to create a application of it and
to integrate the devices. Therefore the framework requires a certain flexibility which
is created by minimizing the effort of device integration and the documentation of the
measurements without limiting the the functionality. The constructed framework will
support the laboratory developments of grating-interferometry-based imaging.

29

6 Attachment

6.1 An Example of an Application Script

1

2 import os
3 import numpy as np
4 import time
5 import datetime
6 import yaml
7 import h5py
8 import threading
9 import coloredlogs

10 import logging
11 from DexDetector import TranslateDet
12 from time import sleep
13 import subprocess
14 import IPython
15 from MeasurementClasses.Measurement import Setup , Measurement
16 import argparse
17

18 path = "C:/ Users/gac -gi_bct/Desktop/example/"
19 log_format = "%(asctime)s %(module) -15s %(levelname) -8s %(message)s"
20

21 ### specified setup class
22 class B45Setup ():
23

24 def __init__(self , path):
25 self.setup = Setup(path)
26 self.path = path
27

28 def get_setup(self):
29 return self.setup
30

31 def get_measurement_directory(self ,name):
32 return self.setup.get_measurement_directory(name)
33

34 def get_new_prefix(self):
35 return self.setup.get_new_prefix ()
36

37 def create_measurement_directory(self , prefix):
38 return self.setup.create_measurement_directory(prefix)
39

40 def savemeta(self , name , initdict = {}):
41 tubeinfodict = {

31

6 Attachment

42 "model": "NA" }
43

44 if args.dexdet:
45 detectorinfodict = {
46 "model" : "Dexela 2315 (CL)",
47 "exposure mode" : dexdet.get_exposure_mode ,
48 "exposure time" : dexdet.get_exposure_time ,
49 "binning" : dexdet.get_binning ,
50 "buffer dim" : dexdet.get_bufferdim ,
51 "trigger source" : dexdet.get_trigger_source ,
52 "well mode" : dexdet.get_well_mode ,
53 }
54 else:
55 detectorinfodict = {
56 "model": "NA" }
57

58 infodict = {
59 "Tube": tubeinfodict ,
60 "Detector": detectorinfodict ,
61 ** initdict }
62

63 self.setup.savemeta(name , initdict)
64

65 def snap(self , prefix="", exposure_delay=None):
66 name = create_measurement_directory(prefix=prefix)
67

68 #Acquire a single image with the detector
69 if args.dexdet:
70 dexdet.AcquireSingleImage ()
71

72

73 infodict = {
74 "Measurement": {"type": "single_exposure"} }
75

76 self.savemeta(name , infodict)
77

78 logging.info(f"Saved single exposure image {name}.")
79

80

81 return self.setup.snap(prefix ,exposure_delay)
82

83

84 ### specified measurement class for bunker 5
85 class B45Measurement ():
86

87 def __init__(self , type , path , prefix="", autostart=True):
88 self.setup = B45Setup(path)
89 self.measurement = Measurement(type , self.setup , path = path ,

prefix = prefix)
90 self.success = False
91 self.name = self.measurement.get_name ()
92

93 def start(self):

32

6.1 An Example of an Application Script

94 self.success = True
95 return self.measurement.start(self.setup.get_setup ())
96

97 def stop(self , info ={}):
98 self.measurement.stop(self.setup , info)
99

100 def Simple_snap ():
101 m = B45Measurement("simple_snap", path)
102 m.start()
103 if args.dexdet:
104 dexdet.AcquireSingleImage ()
105 m.stop()
106 return m.name , m.success
107

108 def setup_logging(loglevel):
109 logfile_folder = "C:/Users/gac -gi_bct/Desktop/Setup/Detector/Log"
110 logfile_date = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
111 logfile_filename = f"bunker5_{logfile_date }.log"
112 logfile_full = os.path.join(logfile_folder , logfile_filename)
113 logging.basicConfig(
114 filename=logfile_full ,
115 level=logging.DEBUG ,
116 format=log_format)
117 coloredlogs.DEFAULT_LOG_FORMAT = log_format
118 coloredlogs.DEFAULT_FIELD_STYLES["module"] = {"color": "magenta"}
119 coloredlogs.DEFAULT_FIELD_STYLES["asctime"] = {"color": "blue", "

faint": "true"}
120 coloredlogs.DEFAULT_FIELD_STYLES["levelname"] = {"color": "cyan"}
121 coloredlogs.DEFAULT_LEVEL_STYLES["debug"] = {"color": "black", "

bright": "true"}
122 coloredlogs.install(milliseconds=True)
123 coloredlogs.set_level(loglevel)
124

125 if __name__ =="__main__":
126 parser = argparse.ArgumentParser(
127 description="Command -Line interface for the Project5 setup.")
128

129 parser.add_argument("--dexdet", action= "store_true",
130 help="TranslateDet")
131

132 parser.add_argument(
133 ’-d’, ’--debug’,
134 help="Print lots of debugging statements",
135 action="store_const", dest="loglevel", const="DEBUG",
136 default="INFO")
137 args = parser.parse_args ()
138

139 setup_logging(args.loglevel)
140

141 if args.dexdet:
142

143 stored_image_path = ’C:/Users/gac -gi_bct/Desktop/example/picture ’
144 subprocess.Popen (["C:/Users/gac -gi_bct/Anaconda3/envs/py2/python.

33

6 Attachment

exe","C:/Users/gac -gi_bct/Desktop/Setup/Detector/DexDetector/server.py
"])

145 dexdet = TranslateDet(stored_image_path)
146 logging.info("Connected to the Dexela Detector 2315")
147 logging.info("CREATED OBJECTS: dexdet.")
148

149 # start an interactive IPython session
150 IPython.embed(banner1="", colors="Neutral", autocall =2)

6.2 The generalized Information Classes

1

2 import logging
3 import os
4 import threading
5 import h5py
6 import datetime
7 import yaml
8

9

10

11

12 class Setup ():
13 def __init__(self , path):
14 self.path = path
15

16 def get_measurement_directory(self , name):
17 year = name [:4]
18 month = name [4:6]
19 return f"{self.path }/{ year }/{ month }/{ name}/"
20

21 def get_new_prefix(self):
22 return datetime.datetime.now().strftime("%Y%m%d_%H%M%S%f")
23

24 def create_measurement_directory(self , prefix=""):
25 name = self.get_new_prefix ()
26

27 os.makedirs(self.get_measurement_directory(prefix + name))
28 return prefix + name
29

30 def savemeta(self , name , initdict ={}):
31

32 fname = os.path.basename(name)
33 fullpath = os.path.join(self.get_measurement_directory(name), f"{

fname}.yaml")
34 with open(fullpath , "w") as f:
35 yaml.dump(initdict , f, default_flow_style=False)
36

37

38 def snap(self , prefix="", exposure_delay=None):
39 name = self.create_measurement_directory(prefix=prefix)
40

34

6.2 The generalized Information Classes

41

42 infodict = { "Measurement": {"type": "single_exposure"} }
43

44 self.savemeta(name , infodict)
45

46 logging.info(f"Saved single exposure image {name}.")
47

48 return name
49

50

51 class Measurement ():
52

53

54

55 def __init__(self , type , setup , path , prefix="", autostart=True):
56

57 self.type = type
58 self.prefix = prefix
59 self.name = setup.create_measurement_directory(prefix)
60 self.success = False
61

62

63

64 def get_name(self):
65 return self.name
66

67 def start(self , setup):
68 self.success = True
69

70 log_format = "%(asctime)s %(module) -15s %(levelname) -8s %(message
)s"

71 # log to a file
72 self.logger = logging.getLogger ()
73 logfile_path = os.path.join(
74 setup.get_measurement_directory(self.name),
75 f"{os.path.basename(self.name)}.log")
76 self.logging_handler = logging.FileHandler(logfile_path)
77 self.logging_handler.setLevel(logging.DEBUG)
78 self.logging_handler.setFormatter(logging.Formatter(log_format))
79 self.logger.addHandler(self.logging_handler)
80

81 logging.info(f"Starting ’{self.type}’ measurement: {self.name}.")
82

83 return self.name
84

85

86 def stop(self , setup , info ={}):
87 """
88 info : dict
89 A dictionary with additional information about the

measurement.
90 """
91

35

6 Attachment

92

93 measurement_dict = {
94 "type": self.type ,
95 "success": self.success
96 }
97 infodict = { "Measurement": {** measurement_dict , **info}}
98 setup.savemeta(self.name , infodict)
99

100 logging.info(f"Finished measurement ’{self.type}’ measurement: {
self.name}.")

101

102 # remove the logger
103 self.logger.removeHandler(self.logging_handler)

6.3 The self-created Interface of the 2315 Dexela Detector
from the Varex Company

1 import DexelaPy
2 import msvcrt
3 import time
4 import weakref
5 import threading
6 import os
7

8 class CBData ():
9 def __init__(self , callbackString , callbackFloat , callbackInt):

10 self.callbackString = callbackString
11 self.callbackFloat = callbackFloat
12 self.callbackInt = callbackInt
13

14 class DexDetector ():
15 """
16 A class for Dexela 2315 Detector
17 """
18

19

20

21 """ init """
22 def __init__(self , mypath):
23

24 print("Scanning to see how many devices are present ...")
25 scanner = DexelaPy.BusScannerPy ()
26

27 count = scanner.EnumerateDevices ()
28 print(count)
29

30 for i in range(0,count):
31 info = scanner.GetDevice(i)
32 self.detector = DexelaPy.DexelaDetectorPy(info)
33 print("Acquiring single image from detector with serial

number: %d" % info.serialNum)

36

6.3 The self-created Interface of the 2315 Dexela Detector from the Varex Company

34

35

36

37

38 expMode = DexelaPy.ExposureModes.Expose_and_read
39 binFmt = DexelaPy.bins.x11
40 wellMode = DexelaPy.FullWellModes.High
41 trigger = DexelaPy.ExposureTriggerSource.Internal_Software
42 exposureTime = 250
43 img = DexelaPy.DexImagePy ()
44 self.detector.OpenBoard ()
45 w = self.detector.GetBufferXdim ()
46 h = self.detector.GetBufferYdim ()
47 print("Initializing detector settings ...")
48 self.detector.SetFullWellMode(wellMode)
49 self.detector.SetExposureTime(exposureTime)
50 self.detector.SetBinningMode(binFmt)
51 self.detector.SetTriggerSource(trigger)
52 self.detector.SetExposureMode(expMode)
53 self.path = mypath
54

55 model = self.detector.GetModelNumber ()
56 print("exposureTime: %d, Binning: %s,wellMode: %s, trigger: %s,"

%(exposureTime , binFmt , wellMode , trigger))
57 print("expMode: %s" %(expMode))
58

59

60

61

62 """ set functions """
63

64 """ set exposure modes """
65 def set_expose_and_read(self):
66 expMode = DexelaPy.ExposureModes.Expose_and_read
67 self.detector.SetExposureMode(expMode)
68 print("expMode: %s" %(expMode))
69 return
70

71 def set_sequence_exposure(self):
72 expMode = DexelaPy.ExposureModes.Sequence_Exposure
73 self.detector.SetExposureMode(expMode)
74 print("expMode: %s" %(expMode))
75 return
76

77 def set_frame_rate_mode(self):
78 expMode = DexelaPy.ExposureModes.Frame_Rate_exposure
79 self.detector.SetExposureMode(expMode)
80 print("expMode: %s" %(expMode))
81 return
82

83

84 """ set Binning """
85

37

6 Attachment

86 def set_binFmt_x11(self):
87

88 binFmt = DexelaPy.bins.x11
89 self.detector.SetBinningMode(binFmt)
90 print("Binning: %s" %(binFmt))
91 return
92

93 def set_binFmt_x22(self):
94 binFmt = DexelaPy.bins.x22
95 self.detector.SetBinningMode(binFmt)
96 print("Binning: %s" %(binFmt))
97 return
98

99 def set_binFmt_x44(self):
100 binFmt = DexelaPy.bins.x44
101 self.detector.SetBinningMode(binFmt)
102 print("Binning: %s" %(binFmt))
103 return
104

105 """ set wellMode """
106

107 def set_well_mode_high(self):
108 wellMode = DexelaPy.FullWellModes.High
109 self.detector.SetFullWellMode(wellMode)
110 print("wellMode: %s" %(wellMode))
111 return
112

113

114

115 def set_well_mode_low(self):
116 wellMode = DexelaPy.FullWellModes.Low
117 self.detector.SetFullWellMode(wellMode)
118 print("wellMode: %s" %(wellMode))
119 return
120

121 """ set trigger """
122

123 def set_trigger_internal_software(self):
124 trigger = DexelaPy.ExposureTriggerSource.Internal_Software
125 self.detector.SetTriggerSource(trigger)
126 print("trigger: %s" %(trigger))
127 return
128

129 def set_ext_neg_edge_trig(self):
130 trigger = DexelaPy.ExposureTriggerSource.Ext_neg_edge_trig
131 self.detector.SetTriggerSource(trigger)
132 print("trigger: %s" %(trigger))
133 return
134

135 def set_ext_duration_trig(self):
136 trigger = DexelaPy.ExposureTriggerSource.Ext_Duration_Trig
137 self.detector.SetTriggerSource(trigger)
138 print("trigger: %s" %(trigger))

38

6.3 The self-created Interface of the 2315 Dexela Detector from the Varex Company

139 return
140

141 """ set exposure time """
142

143 def set_exposure_time(self ,time):
144 exposureTime = time
145 self.detector.SetExposureTime(exposureTime)
146 if(time > 37.77):
147 print("exposure time: %s" %(exposureTime))
148 else:
149 print(’exposure time too small , min : 37.77 ’)
150 print(’exposure time is set to %d’ %(self.detector.

GetExposureTime ()))
151 return
152

153 """ set CL interface power """
154

155 def set_power_CL_interface_On(self):
156 self.detector.PowerCLInterface(True)
157 print("Power is on")
158 return
159

160 def set_power_CL_interface_Off(self):
161 self.detector.PowerCLInterface(False)
162 print("Power is off")
163 return
164

165 """ set Generator toggling """
166

167

168 def start_generator_toggling(self):
169 self.detector.ToggleGenerator(True)
170 print("Generator started toggling")
171 return
172

173 def stopp_generator_toggling(self):
174 self.detector.ToggleGenerator(False)
175 print("Generator stopped toggling")
176 return
177

178 """ set readout mode """
179

180 def set_readout_mode_cont(self):
181 mode = DexelaPy.ReadoutModes.ContinuousReadout
182 self.detector.SetReadoutMode(mode)
183 print("readout mode: %s" %(mode))
184 return
185

186 def set_readout_mode_idle(self):
187 mode = DexelaPy.ReadoutModes.IdleMode
188 self.detector.SetReadoutMode(mode)
189 print("readout mode: %s" %(mode))
190 return

39

6 Attachment

191

192

193 """ get functions """
194

195 """ get binning """
196

197 def get_binning(self):
198 binning = self.detector.GetBinningMode ()
199 print("binning: %s"%(binning))
200 return binning
201

202 """ get Bufferdimension """
203

204 def get_bufferdim(self):
205 w = self.detector.GetBufferXdim ()
206 h = self.detector.GetBufferYdim ()
207 print("h (y-axis): %d, w(x-axis): %d" %(h,w))
208 return ’%d %d’ %(h,w)
209

210 """ get exposure time """
211

212 def get_exposure_time(self):
213 exposureTime = self.detector.GetExposureTime ()
214 print("exposure time: %s" %(exposureTime))
215 return exposureTime
216

217 def get_trigger_source(self):
218 triggersource = self.detector.GetTriggerSource ()
219 print("trigger source: %s"%(triggersource))
220 return triggersource
221

222 """ get readout mode """
223

224 def get_readout_mode(self):
225 mode = self.detector.GetReadoutMode ()
226 print("readout mode: %s" %(mode))
227 return mode
228

229 """ get exposure mode """
230

231 def get_exposure_mode(self):
232 expMode = self.detector.GetExposureMode ()
233 print("expMode: %s" %(expMode))
234 return expMode
235

236 """ get well mode """
237 def get_well_mode(self):
238 wellMode = self.detector.GetFullWellMode ()
239

240 print("wellMode: %s" %(wellMode))
241 return wellMode
242

243

40

6.3 The self-created Interface of the 2315 Dexela Detector from the Varex Company

244

245

246 """ Aquire functions """
247

248 def AcquireSingleImage(self):
249 "start acquisition for a single image"
250 exposureTime = int(self.detector.GetExposureTime ())
251 os.chdir(self.path)
252 img = DexelaPy.DexImagePy ()
253 try:
254 self.detector.Snap(1, exposureTime +1000)
255

256 print("Grabbed Image!")
257 self.detector.ReadBuffer (1,img);
258

259

260 img.UnscrambleImage ()
261

262

263 filename = ’Image1_%dx%d.smv’ % (img.GetImageXdim (),img.
GetImageYdim ())

264 img.WriteImage(filename)
265

266 print("Image successfully saved!")
267 #self.detector.CloseBoard ()
268 except DexelaPy.DexelaExceptionPy as ex :
269 print("Exception Occurred!")
270 print("Description: %s" % ex)
271 DexException = ex.DexelaException
272 print("Function: %s" % DexException.GetFunctionName ())
273 return ’failed to grab an Image! No solution for this

problem ... maybe next time’
274 return ("Image successfully saved! filename: %s" %(filename))
275

276 def AcquirePulseGeneratorSequence(self):
277 img = DexelaPy.DexImagePy ()
278 exposureTime = int(self.detector.GetExposureTime ())
279 os.chdir(self.path)
280

281

282 self.detector.EnablePulseGenerator ()
283 self.detector.GoLiveSeq ()
284

285 self.detector.ToggleGenerator(True)
286 counter = 0
287

288 while counter < 10:
289 try:
290 self.detector.WaitImage(exposureTime + 1000)
291 counter += 1
292 buf = self.detector.GetCapturedBuffer ()
293

294 self.detector.ReadBuffer(buf ,img ,img.GetImageDepth ())

41

6 Attachment

295 except DexelaPy.DexelaExceptionPy as ex :
296 print("Exception Occurred!")
297 print("Description: %s" % ex)
298 DexException = ex.DexelaException
299 print("Function: %s" % DexException.GetFunctionName ())
300

301 print(’failed to grab an Image! No solution for this
problem ... maybe next time’)

302 return ’failed to grab an Image! No solution for this
problem ... maybe next time’

303 print("Grabbed Image %d!" % (counter))
304 time.sleep (1)
305

306 self.detector.ToggleGenerator(False)
307 self.detector.DisablePulseGenerator ()
308

309 img.UnscrambleImage ()
310

311 print("Images Successfully Grabbed!")
312

313 filename = ’PulseGenImages_%dx%dx%d.smv’ % (img.GetImageXdim (),
img.GetImageYdim (),img.GetImageDepth ())

314 img.WriteImage(filename)
315

316 print("Images successfully saved!")
317

318 if self.detector.IsLive () :
319 self.detector.GoUnLive ()
320

321

322

323 return ("Image successfully saved! filename: %s" %(filename))
324

325 def AcquireSequenceMode(self , gapTime = 0, exposures = 5):
326 os.chdir(self.path)
327 self.detector.CloseBoard ()
328 self.detector.OpenBoard(exposures)
329 self.detector.SetNumOfExposures(exposures)
330

331 self.detector.SetGapTime(gapTime)
332

333 exposureTime = self.detector.GetExposureTime ()
334

335 if gapTime == 0:
336 expMode = DexelaPy.ExposureModes.Sequence_Exposure
337 else:
338 expMode = DexelaPy.ExposureModes.Frame_Rate_exposure
339

340 img = DexelaPy.DexImagePy ()
341 self.detector.GoLiveSeq (0,exposures -1, exposures)
342 startCount = self.detector.GetFieldCount ()
343 count = startCount
344

42

6.3 The self-created Interface of the 2315 Dexela Detector from the Varex Company

345 self.detector.SoftwareTrigger ()
346

347 start_time = time.time()
348 print((time.time() - start_time))
349 while count < startCount+exposures +1 and (exposureTime *

exposures) > (time.time() - start_time)* 1000:
350 count = self.detector.GetFieldCount ()
351 print("field count: %d" % count)
352 time.sleep (0.1)
353

354 if(count < startCount+exposures +1):
355 return "couldn ’t grab an Image an error occured! tyr again

maybe it works now"
356

357 for i in range (0,exposures):
358 self.detector.ReadBuffer(i,img ,i)
359

360 img.UnscrambleImage ()
361

362 print("Sequence Successfully Grabbed!")
363

364 filename = ’ImageSequence_%dx%dx%d.smv’ %(img.GetImageXdim (),img.
GetImageYdim (),exposures)

365 img.WriteImage(filename)
366

367 print("Sequence successfully saved!")
368

369 if self.detector.IsLive () :
370 self.detector.GoUnLive ()
371

372

373

374 return ("Image successfully saved! filename: %s" %(filename))
375

376 def AquireImageCallback(self , imCnt = 0):
377 os.chdir(self.path)
378 #go_further = False
379 start_time = time.time()
380 #done = False
381 #times = 0
382 def myCallback(fc , buf , detRef):
383 #times = time + 1
384 det = detRef ()
385 #print(det)
386 cbData = det.GetCallbackData ()
387 #print(cbData)
388 print("Callback message: %s. float: %f. int: %d." % (cbData.

callbackString ,cbData.callbackFloat ,cbData.callbackInt))
389 print("Image: %d grabbed! Image is in buffer: %d. Model

Number: %d" % (fc,buf ,det.GetModelNumber ()))
390

391

392

43

6 Attachment

393

394 img = DexelaPy.DexImagePy ()
395 exposureTime = int(self.detector.GetExposureTime ())
396

397 self.detector.EnablePulseGenerator ()
398

399 cbData = CBData("My callback message!" ,3.14 ,2015)
400 self.detector.SetCallbackData(cbData)
401 self.detector.SetCallback(myCallback , weakref.ref(self.detector))
402

403 self.detector.GoLiveSeq ()
404

405 print("Press any key to terminate acquisition")
406 self.detector.ToggleGenerator(True)
407

408 while time.time() - start_time < 8.90799999237:
409 self.detector.CheckForCallbackError ()
410 self.detector.CheckForLiveError ()
411

412

413 self.detector.ToggleGenerator(False)
414 self.detector.DisablePulseGenerator ()
415

416 if self.detector.IsLive () :
417 self.detector.GoUnLive ()
418

419 time.sleep((exposureTime /1000) +0.1)
420

421 self.detector.StopCallback ()
422

423 self.detector.CloseBoard ()
424

425 return ("Callback finished , 30 Images grabbed and stored in
buffer.")

6.4 The Client Script

1 import zmq
2 import sys
3

4 """ send function to communicate with detector """
5

6 def send(string):
7

8

9

10

11 port = "5556"
12

13 if len(sys.argv) > 2:
14 port1 = sys.argv [2]
15 int(port1)

44

6.4 The Client Script

16

17 context = zmq.Context ()
18 print ("Connecting to detector via server ...")
19 socket = context.socket(zmq.REQ)
20 socket.connect ("tcp :// localhost :%s" % port)
21 if len(sys.argv) > 2:
22 socket.connect ("tcp :// localhost :%s" % port1)
23

24

25 request = 1
26 socket.send_string (string)
27 message = socket.recv()
28 print ("Received reply ", request , "message: ", message ,)
29 request +=1
30

31 return message
32

33

34

35 class TranslateDet ():
36

37 def __init__(self , path):
38

39 send(’-1 %s’ %(path))
40

41 return
42

43 def new_method(self , path):
44 self.path = path
45

46 """ set functions """
47

48 def set_exposure_time(self ,time):
49 msg = send(’set_exposure_time %s’ %(time))
50 if(time > 37.77):
51 print("set exposure time to %s" %(time))
52 else:
53 print(’exposure time too small , min : 37.77 ’)
54 print(’exposure time is set to 37.7700004578 ’)
55 return
56

57 def set_expose_and_read(self):
58 send(’expose_and_read ’)
59 print(’set exposure mode to Expose_and_read ’)
60 return
61

62 def set_sequence_exposure(self):
63 send(’set_sequence_exposure ’)
64 print(’set exposure mode to Sequence_Exposure ’)
65 return
66

67 def set_frame_rate_mode(self):
68 send(’set_frame_rate_mode ’)

45

6 Attachment

69 print(’set exposure mode to Frame_Rate_exposure ’)
70 return
71

72 def set_binFmt_x11(self):
73 send(’set_binFmt_x11 ’)
74 print(’set binning to x11’)
75 return
76

77 def set_binFmt_x22(self):
78 send(’set_binFmt_x22 ’)
79 print(’set binning to x22’)
80 return
81

82 def set_binFmt_x44(self):
83 send(’set_binFmt_x44 ’)
84 print(’set binning to x44’)
85 return
86

87 def set_well_mode_high(self):
88 send(’set_well_mode_high ’)
89 print(’set wellmode to High’)
90 return
91

92 def set_well_mode_low(self):
93 send(’set_well_mode_low ’)
94 print(’set wellmode to Low’)
95 return
96

97 def set_trigger_internal_software(self):
98 send(’set_trigger_internal_software ’)
99 print(’set triggersource to Internal_Software ’)

100 return
101

102 def set_ext_neg_edge_trig(self):
103 send(’set_ext_neg_edge_trig ’)
104 print(’set triggersource to Ext_neg_edge_trig ’)
105 return
106

107 def set_ext_duration_trig(self):
108 send(’set_ext_duration_trig ’)
109 print(’set triggersource to Ext_Duration_Trig ’)
110 return
111

112 def set_power_CL_interface_On(self):
113 send(’set_power_CL_interface_On ’)
114 print(’turned the CL interface power on’)
115 return
116

117 def set_power_CL_interface_Off(self):
118 send(’set_power_CL_interface_Off ’)
119 print(’turned the CL interface power off’)
120 return
121

46

6.4 The Client Script

122 def start_generator_toggling(self):
123 send(’start_generator_toggling ’)
124 print(’generator started toggling ’)
125 return
126

127 def stopp_generator_toggling(self):
128 send(’stopp_generator_toggling ’)
129 print(’generator stopped toggling ’)
130 return
131

132 def set_readout_mode_cont(self):
133 send(’set_readout_mode_cont ’)
134 print(’set readout mode to ContinuousReadout ’)
135 return
136

137 def set_readout_mode_idle(self):
138 send(’set_readout_mode_idle ’)
139 print(’set readout mode to IdleMode ’)
140 return
141

142 """ get functions """
143

144 def get_binning(self):
145 send(’get_binning ’)
146 print(’binning : %s’ %(s))
147 return
148

149 def get_bufferdim(self):
150 send(’get_bufferdim ’)
151 return
152

153 def get_exposure_time(self):
154 send(’get_exposure_time ’)
155 return
156

157 def get_trigger_source(self):
158 send(’get_trigger_source ’)
159 return
160

161 def get_readout_mode(self):
162 send(’get_readout_mode ’)
163 return
164

165 def get_exposure_mode(self):
166 send(’get_exposure_mode ’)
167 return
168

169 def get_well_mode(self):
170 send(’get_well_mode ’)
171 return
172

173 """ Image Acquisition functions """
174

47

6 Attachment

175 def AcquireSingleImage(self):
176 send(’AcquireSingleImage ’)
177 return
178

179 def AcquirePulseGeneratorSequence (self):
180 send(’AcquirePulseGeneratorSequence ’)
181 return
182

183 def AcquireSequenceMode(self ,gaptime = 0, exposures = 5):
184 send(’AcquireSequenceMode %s %s’ %(gaptime , exposures))
185 return
186

187 def AquireImageCallback(self ,imCnt = 0):
188

189 send(’AquireImageCallback %s’ %(imCnt))
190 return

6.5 The Server Script

1

2 import zmq
3 from time import sleep
4 import sys
5 from DetClass import DexDetector
6

7

8 port = "5556"
9 if len(sys.argv) > 1:

10 port = sys.argv [1]
11 int(port)
12

13 context = zmq.Context ()
14

15 socket = context.socket(zmq.REP)
16 socket.bind("tcp ://*:%s" % port)
17

18

19

20

21

22 while(True):
23 init = False
24 msg = ’’
25

26 while (msg == ’’):
27 msg = socket.recv()
28 message = msg.split()
29 message = msg.split()
30 print("Received request: ", message)
31

32 reply = False # to get the values of the get -functions
33

48

6.5 The Server Script

34

35

36 if (message [0] == ’-1’):
37 path = message [1]
38 det = DexDetector(path)
39 a = det.get_exposure_mode ()
40 b = det.get_exposure_time ()
41 c = det.get_binning ()
42 d = det.get_well_mode ()
43 e = det.get_trigger_source ()
44 task = ’init’
45 info = [’exposuremode : %s’ %(a),’exposuretime : %s’ %(b) ,’

binning : %s’ %(c),’wellmode : %s’ %(d),’triggersource : %s’ %(e)]
46 init = True
47

48 """ set functions """
49

50 if(message [0] == ’set_exposure_time ’):
51 a = det.set_exposure_time(int(message [1]))
52

53

54 if(message [0] == ’set_expose_and_read ’):
55 det.set_expose_and_read ()
56

57 if(message [0] == ’set_sequence_exposure ’):
58 det.set_sequence_exposure ()
59

60 if(message [0] == ’set_frame_rate_mode ’):
61 det.set_frame_rate_mode ()
62

63 if(message [0] == ’set_binFmt_x11 ’):
64 det.set_binFmt_x11 ()
65

66 if(message [0] == ’set_binFmt_x22 ’):
67 det.set_binFmt_x22 ()
68

69 if(message [0] == ’set_binFmt_x44 ’):
70 det.set_binFmt_x44 ()
71

72 if(message [0] == ’set_well_mode_high ’):
73 det.set_well_mode_high ()
74

75 if(message [0] == ’set_well_mode_low ’):
76 det.set_well_mode_low ()
77

78 if(message [0] == ’set_trigger_internal_software ’):
79 det.set_trigger_internal_software ()
80

81 if(message [0] == ’set_ext_neg_edge_trig ’):
82 det.set_ext_neg_edge_trig ()
83

84 if(message [0] == ’set_ext_duration_trig ’):
85 det.set_ext_duration_trig ()

49

6 Attachment

86

87 if(message [0] == ’set_power_CL_interface_On ’):
88 det.set_power_CL_interface_On ()
89

90 if(message [0] == ’set_power_CL_interface_Off ’):
91 det.set_power_CL_interface_Off ()
92

93 if(message [0] == ’start_generator_toggling ’):
94 det.start_generator_toggling ()
95

96 if(message [0] == ’stopp_generator_toggling ’):
97 det.stopp_generator_toggling ()
98

99 if(message [0] == ’set_readout_mode_cont ’):
100 det.set_readout_mode_cont ()
101

102 if(message [0] == ’set_readout_mode_idle ’):
103 det.set_readout_mode_idle ()
104

105 """ get functoions """
106

107 if(message [0] == ’get_binning ’):
108 s = (’binning: %s’ %(det.get_binning ()))
109 reply = True
110

111 if(message [0] == ’get_bufferdim ’):
112 info = det.get_bufferdim ()
113 prepare = info.split()
114

115 s = (’bufferdim (h,w): (%s,%s)’ %(prepare [0], prepare [1]))
116 reply = True
117

118 if(message [0] == ’get_exposure_time ’):
119 s = (’exposure time: %s’ %(det.get_exposure_time ()))
120 reply = True
121

122 if(message [0] == ’get_trigger_source ’):
123 s = (’trigger source: %s’ %(det.get_trigger_source ()))
124 reply = True
125

126 if(message [0] == ’get_readout_mode ’):
127 s = (’readout mode: %s’ %(det.get_readout_mode ()))
128 reply = True
129

130 if(message [0] == ’get_exposure_mode ’):
131 s = (’exposure mode: %s’ %(det.get_exposure_mode ()))
132 reply = True
133

134 if(message [0] == ’get_well_mode ’):
135 s = (’wellmode: %s’ %(det.get_well_mode ()))
136 reply = True
137

138 """ acquire Images functions """

50

6.5 The Server Script

139

140 if(message [0] == ’AcquireSingleImage ’):
141 s = (det.AcquireSingleImage ())
142 reply = True
143

144 if(message [0] == ’AcquirePulseGeneratorSequence ’):
145 s = (det.AcquirePulseGeneratorSequence ())
146 reply = True
147

148 if(message [0] == ’AcquireSequenceMode ’):
149 s = (det.AcquireSequenceMode(int(message [1]), int(message [2])))
150 reply = True
151

152 if(message [0] == ’AquireImageCallback ’):
153 s = (det.AquireImageCallback(message [1]))
154 reply = True
155

156

157

158 sleep (1)
159 if (init == False):
160 if (reply == True):
161 socket.send("task completed , connected port : %s, %s " % (

port , s))
162 else:
163 socket.send("task completed , connected port : %s" % (port))
164

165

166

167 else:
168 socket.send("%s completed , connected port : %s, info: %s" % (task

, port , info))

51

6 Attachment

6.6 Links of Python Standard Modules

Modules: Links:
os https://docs.python.org/3/library/os.html
numpy https://numpy.org/doc/stable/reference/
time https://docs.python.org/3/library/time.html
datetime https://docs.python.org/3/library/datetime.html
yaml https://pyyaml.org/wiki/PyYAMLDocumentation
h5py https://buildmedia.readthedocs.org/media/pdf/h5py/latest/h5py.pdf
threading https://docs.python.org/3/library/threading.html
clororedlogs https://coloredlogs.readthedocs.io/en/latest/api.html
logging https://docs.python.org/3/library/logging.html
subprocess https://docs.python.org/3/library/subprocess.html
IPython https://ipython.org/ipython-doc/3/index.html
argparse https://docs.python.org/3/library/argparse.html
msvcrt https://docs.python.org/3/library/msvcrt.html
weakref https://docs.python.org/3/library/weakref.html
zmq https://zguide.zeromq.org/
sys https://docs.python.org/3/library/sys.html

52

Bibliography

[1] Carl A Carlsson and Gudrun Alm Alm Carlsson. Basic physics of X-ray imaging.
Linköping University Electronic Press, 1973.

[2] Andreas Maier et al. “Medical imaging systems: An introductory guide”. In: (2018).

[3] Thomas Thüring. “Compact X-ray grating interferometry for phase and dark-field
computed tomography in the diagnostic energy range”. en. PhD thesis. Zürich:
ETH Zurich, 2013. DOI: 10.3929/ethz-a-010008147.

[4] Wikipedia. Talbot effect — Wikipedia, The Free Encyclopedia. http://en.wikipedia.
org/w/index.php?title=Talbot\%20effect&oldid=1024983109. [Online; ac-
cessed 01-June-2021]. 2021.

53

