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ABSTRACT

The X-Ray Tomography Group of the Biomedical Engineering Institute at ETH
Zurich operates an X-ray grating interferometer located at the Paul Scherrer In-
stitut. This setup is extensively used for laboratory X-ray imaging of samples for
materials sciences as well as biological and medical ones. As part of ongoing re-
search activities at this setup, I was granted the responsibility to design high-level
operation and data processing software in the context of my Bachelor’s thesis. Be-
fore my arrival the setup had been operated with low-level software and in order
to allow for hardware independent operation and reduce acquisition times, a high
level software package was created. The written operation software allows for a
quick change of hardware components and more can be easily added. In the case of
one detector, a significant reduction in overhead time was achieved. The high-level
approach ensures the safe operation by group members with very little experience,
making it available as a research tool for larger parts of the group. Further, a
collection of frequently used data processing functions was created and their capa-
bilities extended, such that they can handle different types of inputs. Tomographic
reconstruction had so far only been done using parallel geometries. This function-
ality was extended such that it now considers the cone shaped geometry of the
real system and makes use of the highly parallelizable architecture of GPUs, while
operational simplicity for the user was kept at the same level.
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1 INTRODUCTION

X-ray imaging started with the detection of X-rays by W. Röntgen and the subsequent pub-

lishment of the �rst X-ray image in 1895. Soon, single projections were not enough anymore

and driven by the motivation to get an insight into the rib cage, without the ribs interfer-

ing, axial tomography was invented in the late 1930s and 40s. Those axial tomographs were

purely mechanical and only in the 1960s, with the rise of the digital technology, the idea of a

computer-based back projection arose. This led to the creation of CT by A. Cormack and G.

Houns�eld, for which they were awarded the Nobel prize in 1979. In parallel, phase contrast

imaging was developed for the visible light spectrum and is a well established technology for

microscopy [5]. Adaptation using X-ray was slow due to challenges in the microfabrication

process of X-ray optical elements. Nevertheless, interferometry for synchrotrons was explored

and successfully deployed during the 1990s [15] and early 2000s. Subsequently, in 2006, the

development of a Talbot-Lau interferometer setup with a conventional X-ray tube was �rst

published [11]. This opened the doors for future medical applications since the better contrast

in soft tissues has great potential, for example in the detection of breast cancer.

Such a system, has been installed at the X-ray tomography group of Prof. Dr. M. Stampanoni

at the Paul Scherrer Institut. It o�ers high spatial resolution ( 10µm) in a �eld of view of 5-15

cm. So far, typical acquisition times for tomographic scans ranged from 15 hours to 3 days,

depending on the setup geometry and the number of projections. The motivation behind this

thesis was to bring the acquisition times down by streamlining the process, make it universal for

di�erent hardware components and provide a software infrastructure for quick reconstruction

of the acquired projections. Eventually this setup should be able to acquire and process high

resolution phase contrast tomography, for example of histopathological samples, in a time frame

of 2-3 h. The high-level approach that the software should follow would also allow this setup to

be used as a research tool for other members of the group. After getting comfortable with the

operation of the single components, points of optimization can be identi�ed with which this

high-level framework should be designed. By optimizing the interaction between the hardware

components, acquisition times should be brought down. Tomographic reconstruction should

be enhanced by introducing a simpli�ed access to powerful GPU optimized reconstruction
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1. Introduction

algorithms. Those algorithms are not only faster, but they also take the diverging X-ray beam

into account, therefore closer resembling the real setup.

The �rst part of the thesis will cover the theory behind phase contrast X-ray imaging using

interferometers and the reconstruction of acquired tomographic data sets. The second part

covers the di�erent hardware components and improvements made in this respect. Further,

the last two parts, will present the software packages for controlling the setup and for the

reconstruction. The emphasis will lie on improvements that simplify and speed up operation

as well as the processing of data.
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2 THEORY

The goal of this chapter is to lay out the mathematical and physical foundation behind X-ray

interferometry used for phase contrast imaging and tomographic acquisition and reconstruction.

Understanding this is of importance when looking at the operation and reconstruction software

packages and for the discussion of experimental results.

2.1. X-Rays and Matter

X-rays are photons with an Energy of E = hc
� , where h is Planck's constant, which is exper-

imentally derived, and � is the wavelength of the corresponding photon. While visible light

has wavelengths of 400 nm (violet) to 700 nm (red), the energy range of diagnostic X-rays,

which is the primary focus of this thesis, lies in between 10 keV and 150 keV and therefore

the wavelengths are signi�cantly smaller (0.12 nm to 0.008 nm). The dominating e�ects of

matter interaction at this energy range are photoelectric absorption, Compton scattering &

Rayleigh scattering. Photoelectric absorption is a contributor to the attenuation or decrease in

intensity of the incoming X-ray beam, Compton scattering both attenuates and scatters, while

Rayleigh only leads to scattering of the photons [19, p. 8]. X-rays follow the wave-particle

duality and interferometric imaging makes use of their wave nature with the help of di�raction

and refraction.

In order to understand the X-ray and matter interaction it is helpful to start with plane waves

propagating in a medium, mathematically described by the following equation:

E(r; t ) = Ref E(r )e� i!t g (2.1)

E is the complex �eld amplitude of the real time dependent �eld E and E is again described

with the help of �eld vector E0 and wave vector r , determining polarization and propagation

directions.

E(r ) = E0e� ik �r (2.2)

3



2. Theory

Without loss of generality, but for reasons of simplicity, it is helpful to constrain calculations

to plane waves travelling in z-direction, incident to an object in space. The underscore of the

vectorial �eld quantities will be dropped from now on and kz = 2 �=� simpli�es to a scalar

quantity, the wave number.

E in (z) = E0eik z z (2.3)

As described by [19, p. 11], the total interaction of such an X-ray wave travelling through a

sample betweenz = 0 and z = z0 can be described by a line integral along the z-axis that sums

all interaction. This results in the following relation between incoming and outgoing waves.

Eout = E in eik
Rz0

0
n(z)dz (2.4)

n(z) is the spatial distribution of the complex coe�cient of refraction n = 1 � � + i� , where �

is related to the attenuation properties of the material and � to the phase shifting properties.

Putting this into Eq. 2.4 yields a term consisting of a propagative part, a phase shifting part

and an attenuation part.

Eout = E in eikz 0 e� ik
Rz0

0
� (z)dze� k

Rz0
0

� (z)dz (2.5)

Deriving attenuation A (in�uence on the amplitude) and phase di�erence from Eq. 2.5, the

resulting equations are the following [19, p. 11]:

A = 1 �
�

j Eout j
j E in eikz 0 j

� 2
(2.6a)

� = arg(Eout ) � arg(E in eikz 0 ) (2.6b)

As can be seen from the equations, the incoming �eld (E in ) that propagated through the

sample space without the sample present (E in eikz 0 ), must be measured as well. From now on,

this will be the so called �at-�eld image. X-ray detectors use di�erent technologies to measure

the intensity of the beam, therefore determiningA from Eq. 2.6a is straightforward. Accessing

the information hidden in the phase of the outgoing wave is more complicated, and its process

will be explained in detail in the next sections.

2.2. Talbot Effect

In 1836, Henry Fox Talbot made the observation that light, incident to a grating, will reproduce

the exact structure of the grating, if a screen is placed at certain distances behind the grating.
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2.2. Talbot E�ect

In 1881 Lord Rayleigh was the �rst to quantify these distances as:

z = m �
d2

�
(2.7)

For these distances,d is the period of the grating, � the wavelength of the incident particle and

m is an arbitrary integer value. The actual reproduction happens at double these distances,

zT = m � 2d2=� , the image at d2=� is shifted to the side by half the grating period [12, p. 196].

The value of zT will from now on be called Talbot distance and the integer m will be called the

Talbot order.

In order to calculate this value, one can imagine a wave incident to the grating in the(x; y)

plane at z = 0 . The grating structure can be imagined as vertical, which corresponds to

parallel to the y-axis. The incident wave has an angle of incidence of� between propagation

direction and the (y; z) plane. This angle is of interest since the grating acts on the wave

component perpendicular to both the grating structure and the propagation direction, which

is the x-axis. As presented by [2] the �eld behind the grating can be calculated by starting with

the projection of the wave vector onto thex axis kx = ksin (� ), yielding the wave of interest as

 = eik x x and calculating the wave directly behind the grating as follows:

 (x; +0) =  (x; � 0)T(x) =
X

n
Anei (kx +2 �

d n)x (2.8)

In this equation, T(x) =
P

n Anei 2 �
d nx is the grating transfer function. It can be observed that

the grating adds multiples of 2�=d to the wave vector kx , which means that everything so far is

perpendicular to the optical axis. The other wave vector component,kz, can be derived from

the total wave vector and the above x-direction component:

kz =

s

k2 �
�

kx + 2
�
d

n
� 2

(2.9)

Using paraxial- and Taylor approximations, as shown by [20], this can be simpli�ed to:

kz � k �

�
kx + 2 �

d n
� 2

2k
(2.10)

Adding this to the calculation from above, the complete �eld behind the grating presents itself

as the following:

 (x; z) =
X

n
Ane

i (ksin (� )+2 �
d n)x+ i

�
k�

(ksin ( � )+2 �
d n )2

2k

�
z

(2.11)
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2. Theory

For the Talbot e�ect to happen, spatially coherent waves are required to be incident to the

grating, therefore sin (� ) = 0 . Also putting in the relation that k = 2 �=� the �eld simpli�es

to:

 (x; z) =
X

n
Anei 2 �

d nx ei 2 �
� ze� in 2 ��

d2 z (2.12)

The second term is not of interest, since it is independent ofn and introduces a global phase.

It is visible that e� in 2 ��
d2 z becomese� i 2m� �n2

for z = m � 2d2=� , which was the before de�ned

Talbot distance. Since this term's exponent includes an integer multiple of2� , it is always one

at those distances. The following �eld at Talbot distances is formed, corresponding exactly to

the transfer function of the grating:

 (x; z = m � 2d2=� ) =
X

n
Anei 2 �

d nx (2.13)

2.3. Fractional Talbot Effect & Moiré Patterns

When using phase gratings, a similar e�ect can be observed, calledLohmann imagesby Suleski

in [16], instead of Talbot self images. They appear at fractions of the Talbot distance and

are therefore part of a class calledFractional Talbot E�ects . The main motivation behind

using phase gratings instead of absorption gratings is, that they can be manufactured from

poorly absorbing material, o�ering very high e�ciency compared to standard gratings, where

absorption is necessary for their function. Suleski lists 36 di�erent combinations of duty cycles

and phase shift values producing such images, this thesis will only look at� and �= 2 shifting

gratings. For a speci�c wave length, from now on called design energy, and a phase grating

that causes a phase shift of� = �= 2 at this energy and has duty cycle 50%, this distance is

1=4th of the original Talbot distance or:

zpar;�= 2 = m �
p2

1

2�
(2.14)

For a phase shift of � , such an image forms at1=16th of the Talbot distance, but here the

period of the Lohmann image is half the grating period, as also stated by [3].

zpar;� = m �
p2

1

8�
(2.15)

With the help of geometric magni�cation, this was the grating speci�cation used in the setup

during the course of this thesis. With s being the complete setup length andl the distance

between the phase grating and a micro focus source, the periods get magni�ed byM = s
l .

For this reason, the distances were deliberately indexedpar, because they are only true for

6



2.4. Talbot-Lau Interferometer

a parallel shaped geometry. For a cone shaped incident beam, those maxima of intensity are

reached at the following distances, as stated by [4], wherel is again the source-phase grating

distance:

zcone =
l

l � zpar
zpar (2.16)

Since the goal is to detect changes when a sample is placed in the beam, analyzing shifts in this

pattern due to a refractive change is necessary. Unfortunately the pixel size of the detector is

signi�cantly bigger than the period of the pattern which makes a direct analysis impossible.

In order to tackle this problem, an analyzer grating instead of the detector itself, is placed at

such a fractional Talbot distance behind the phase grating. The pattern formed by the phase

grating should have the same periodicity as the analyzer and overlap with its structure. A

refractive change in the beam will then immediately translate into an intensity change on the

detector which follows directly behind this analyzer grating.

2.4. Talbot-Lau Interferometer

In order to reach the needed coherence, a source grating is used that creates individually

coherent line sources. Su�cient coherence is a premise for the use of a grating like the the one

from section 2.2 or 2.3. From now on this source grating will be calledG0, the phase grating

G1 and the analyzer grating G2. For these gratings, the periods need to have the following

geometry, wherel is now the length betweenG0 and G1 and d is the distance betweenG1 and

G2 corresponding to the fractional Talbot distance [11]:

pG0 =
l
d

pG2 (2.17)

This is called a Talbot-Lau con�guration and by placing the gratings according to above equa-

tion, the incoherence between the single sources works constructively. [22].

The symmetric setup with � -shifting G1 and the same periods everywhere emerges as one

possible con�guration for such a Talbot-Lau interferometer. Condition 2.17 is ful�lled and the

magni�cation factor of M = 2 increases the period of the Lohmann image atzpar;� to match

the period of G2. An example of such a symmetric setup with gratings of period2µm and

� -shifting G1 is shown in Fig. 2.1.

7



2. Theory

Fig. 2.1.: Symmetric setup with gold �lled absorption gratings and � shifting phase grating. Sample
placement is betweenG0 and G1

2.5. Image Acquisition, Phase Retrieval & Quality Assessment

Data acquisition is done using a phase stepping technique. The analyzer grating is moved in

x-direction, the direction of the grating modulation, over the course of one grating period and

an image is taken at every step.

The phase stepping leads to a phase stepping curve in each pixel, from which absorption

contrast (amp), di�erential phase contrast ( dpc) and scattering or dark-�eld contrast ( dci)

signals can be derived, using Fourier analysis. The valuesa0;1 and � 1 in the formulas below

correspond to norm and phase of the �rst and second Fourier coe�cients for either the �at-�eld

phase stepping curve (ref ) or the phase stepping curve with the sample (sam). The formula for

absorption contrast corresponds to the formula mentioned in Eq. 2.6a. For phase information,

the second Fourier coe�cient is used (unlike Eq. 2.6b), therefore it is called thedi�erential

phase contrast image [19, p. 21].

amp = 1 �
a0;sam

a0;ref
(2.18a)

dpc= � 1;sam � � 1;ref (2.18b)

dci =
a1;sam

a0;sam
�

a0;ref

a1;ref
(2.18c)

2.5.1. Visibility

Since such an interferometer works with polychromatic sources and not everything gets ab-

sorbed in the gold inlays of the absorption gratings, the visibility of the fringes is an important

8



2.6. Computerized Tomography & Tomographic Reconstruction

metric to determine its performance.

As demonstrated by [17], the phase stepping curveI p(x) is a convolution of the optimal in-

terference pattern for coherent sourcesI c(x), the source intensity pro�le at the detector S0(x),

and the transmission of the analyzer gratingG2 (G(x)). Because of the transmission function,

I p(x) is periodic in the G2 grating period and the visibility can be calculated using Fourier

analysis:

V =
I p;max (x) � I p;min (x)
I p;max (x) + I p;min (x)

= 2
a1

a0
(2.19)

Here, a0;1 are again the respective Fourier coe�cients derived from the phase stepping curve.

It is worth noting that assuming G0 and G2 as perfectly absorbing gratings with duty cycle

50%, the visibility would reach 51.6% [17].

2.5.2. Angular Sensitivity

A di�erent metric for measuring the performance of a grating interferometry is the smallest

detectable refraction angle. It is dependent on the inter grating distance ofG1 and G2 (d), the

standard deviation (� � ) of the di�erential phase contrast image dpc= � 1;sam � � 1;ref and the

G2 period, as presented by [18].

� min =
p2

2�d
l
ls

� � (2.20)

The distancesl and ls are the distancesG0-G1 and G0-sample respectively. Sincels is in any

case the smaller distance thanl, the sample should be placed as close as possible toG1 in

order to minimize � min . Longer propagation distances (d) and smaller grating periods are also

bene�cial in this regard.

2.6. Computerized Tomography & Tomographic Reconstruction

Computerized tomography has revolutionized diagnostic radiology and the 1979 Nobel prize

in physiology and medicine was awarded for its development. Many others in the �eld have

followed, for example the 2003 Nobel prize for advancements in magnetic resonance imaging,

a related method that also uses the reconstruction from projections [6].

The idea behind such imaging methods is that, given a su�cient amount of information from

di�erent angular projections through the object, the cross section of the object can be recon-

structed.

9



2. Theory

2.6.1. Mathematical Basis

Even though reconstruction can be done for any kind of projection image mentioned in 2.5,

this section will show it using absorption projections. The formulas hold true for the other

images as well.

Assuming an in�nitely small slice of the object between z = 0 and z = D, the attenuation

along a line passing through this slice can be described as:

m =
Z D

0
� (x; y)dz (2.21)

The value � is the attenuation coe�cient, closely related to � from the complex coe�cient of

refraction mentioned in 2.1 by � = 2k� , with k being the wave number. The goal is to derive

the spatial distribution of � (x; y) in the whole slice from this information.

The mathematical basis for this reconstruction had already been provided by Johann Radon

in 1917 [6, p. 35].

� e(x; y) = �
1

2� 2 lim
� ! 0

Z 1

�

1
q

Z 2�

0
m1(x cos� + y sin � + q; � ) d� dq (2.22)

In this formula, m1 is the partial derivative of the the line integral m(l = xcos� + ysin� + q; � )

with respect to l . Looking from above onto the slice like in Fig. 2.2, l is the deviation to

the side from the center of rotation and � is the angle at which the line integral is taken.

The analogy in a real setup is the following: a slice represents a pixel row on the detector,l

one of these pixels and alll with a certain � form one projection of the slice. Even though

the formula is complicated, it is visible that, given in�nitely small l and � , the attenuation

coe�cient distribution in the slice could be completely and uniquely reconstructed.

2.6.2. Reconstruction Algorithms

Since in reality the data set is never complete to the point where in�nitesimal � and l are

reached, reconstruction is dependent on algorithms that provide reconstruction quality for a

�nite amount of pixels and acquisition angles. Another important factor besides quality is

the computing time to reconstruct such a slice. This is dependent on the algorithm but also

on its implementation and the available hardware. The algorithms presented here are back

projection-based whereas iterative methods with forward projection will not be explained.

10



2.6. Computerized Tomography & Tomographic Reconstruction

Fig. 2.2.: Computerized Tomography acquisition protocol [7, p. 30]. � is the angle at which the
acquisition happens,l the deviation to the side. The detector measures the intensity of the attenuated
beam and together with a �at-�eld measurement, the attenuation A can be derived.

Fourier Slice Theorem

The two algorithms presented here are based on the Fourier slice theorem which states that

projecting a slice of a sample and do a Fourier transform is the same as a 2D Fourier transform

of the sample space. Fig. 2.3 shows the 1D transform of the projections in the 2D Fourier

space. As can be seen, the sampling gets lower with increasing distance from the origin. This

corresponds to the high spatial frequencies, responsible for small details, like sharp edges.

Underrepresentation of these frequencies leads to blurry images [13].

Backprojection

Clearly the simplest reconstruction algorithm, it estimates the density (value of the attenuation

coe�cient � ) at a certain point by assigning every value in the a line the value of the line

integral. This is done for all projection angles and the values are summed up [6, p. 125]. The

problem stated in the section before is strongly visible with this reconstruction method: The

image is very blurry due to the underrepresentation of high spatial frequencies. An example

of this is shown in Fig. 2.4. Though unusable in practice, it lays the foundation for the next

algorithm.

11



2. Theory

Fig. 2.3.: Fourier slice theorem. Shown is the 1D Fourier transform of the projections (gray and black
lines) in the 2D Fourier space. A 2D back transformation would yield the sample space, but the
undersampling in the outer regions is well visible (blue) [13].

(a) Original slice through the
sample.

(b) Reconstruction of the same
slice using BP.

Fig. 2.4.: An example of a backprojection using a phantom. The phantom depicts a capillary with
spheres of di�erent radii and density. The image is blurry and no details are visible with this method,
making it unusable in practice.
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2.6. Computerized Tomography & Tomographic Reconstruction

Filtered Back Projection

The simplest approach to solving the problem mentioned in the sections before, is to apply a

�lter to the 1D Fourier transforms of the projections (gray and black line in Fig. 2.3) before

back projecting them [13]. This is to attenuate the low spatial frequencies such that they are

equally represented after the back projection. The most commonly used �lter is calledRam-Lak

and is shown in Fig. 2.5. This �lter's attenuation is linear with decreasing frequency and many

other �lters exist. An example of a reconstructed slice using FDK (Feldkamp, Davis & Kress),

a 3D extension of the �ltered back projection (FBP), will be shown in the Data Processing

chapter in Fig. 5.6.

Fig. 2.5.: Ram-Lak �lter that attenuates low spatial frequencies (around ! = 0 ) and lets high spatial
frequencies pass [1]. This �lter counteracts the underrepresentation of high spatial frequencies when
using reconstruction algorithms that are based on the Fourier slice theorem.
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3 LAB SETUP

This chapter should give an overview of the di�erent hardware parts of the set up. All of them

are mounted on a rail on an optical table such that the distances can be easily adjusted. In

order to �nd points of optimization, the �rst 2 to 3 weeks of this thesis consisted of learning

the following tasks:

1. Calculating and adjusting the setup geometry.

2. Learning how to align gratings by hand and laser as well as the �ne-alignment with the

motors.

3. Operating the detectors.

4. Combining the hardware in order to do phase stepping scans and determine the perfor-

mance metrics of the system.

All of this was bene�cial to the numerous grating tests that were performed during this time

and it also led to the identi�cation of the required capabilities for the operation software,

explained in the next chapter.

3.1. Detector

Di�erent detectors were used with this setup, but most frequently the Eiger R 1M from Dectris

Ltd., because it provided very good image quality without any further processing. This detector

has a photon detection range of 3.5 to 30 keV, a detection threshold can be set, its pixel size

is 75µm and the image size is1065� 1030pixels, resulting in an active surface of79:9 � 77:1

mm [8]. The almost square sensor area proved to be useful when handling samples in pipettes

or capillaries that are mostly elongated along the vertical axis.

When creating setups for higher design energies (above 30 keV), a CdTe-based detector from

Dectris was used, because its detection threshold could be adjusted to such high energy values.
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