
Automation of NNLO Amplitude Construction
in OpenLoops

Natalie Schär
June 1, 2021

in collaboration with:
S. Pozzorini and M. F. Zoller



NNLO in OpenLoops

Monte Carlo Simulation contains:

• Hard Scattering Amplitudes → OpenLoops
• PDFs, Parton Shower, Hadronisation, Underlying Events

OpenLoops constructs Amplitudes from Feynman Diagrams.

σpart ∼
( )

∼ α2
s LO

+
( )

+
( )

∼ α3
s NLO

+
( )

+
( )

+
( )

+
( )

∼ α4
s NNLO

NNLO required for LHC.
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Components to NNLO

Some components to NNLO are a available in the public version of OpenLoops:

tree( )
︸ ︷︷ ︸

available

virtual real

+
( )

+
( )

︸ ︷︷ ︸
available

real virtual double virtual double real loop squared

+
( )
︸ ︷︷ ︸

(available)

+
( )
︸ ︷︷ ︸

new!

+
( )
︸ ︷︷ ︸

(available)

+
( )
︸ ︷︷ ︸

available

Double virtual required for NNLO.

2



Components to NNLO

Distinguish three types of double virtual diagrams.

tree( )
virtual real

+
( )

+
( )

real virtual double virtual double real loop squared

+
( )

+
( )

+
( )

+
( )

ID2

︸ ︷︷ ︸
new

ID1

︸ ︷︷ ︸
(new)

RED

︸ ︷︷ ︸
(new)
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Components to NNLO

For one diagram Γ:
renormalized Amplitude (D dimensions) =M2,Γ(4d numerator, D-dim denominator)
+ rational and UV counterterms (in lower loop diagrams)

M2,Γ =

w(1)
1

w(1)
2

w(1)

N1−1

D(1)
0

D(1)
1

D(1)

N1−1

w(3)
1

w(3)

N3−1

D(3)
0

D(3)
N3−1

w(2)
1

w(2)
2

w(2)

N2−1

D(2)
0

D(2)
1

D(2)

N2−1

V0

V1

q1 q2

q3

= C2,Γ︸︷︷︸
color

R1∑
r1=0

R2∑
r2=0

Nµ1···µr1ν1···νr2︸ ︷︷ ︸
tensor coefficient

∫
dq̄1

∫
dq̄2

qµ11 · · · q
µr1
1 qν12 · · · q

νr2
2

D(1)(q̄1)D(2)(q̄2)D(3)(q̄3)

∣∣
q3→−(q1+q2)︸ ︷︷ ︸

tensor integral

In OpenLoops:
• tensor coefficients constructed numerically → in 4 dimensions
• restore coefficients to D dimensions by rational counterterms
• denominators kept analytical
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Components to NNLO Calculation

M2,Γ = C2,Γ

R1∑
r1=0

R2∑
r2=0

Nµ1···µr1ν1···νr2︸ ︷︷ ︸
tensor coefficient

∫
dq̄1

∫
dq̄2

qµ11 · · · q
µr1
1 qν12 · · · q

νr2
2

D(1)(q̄1)D(2)(q̄2)D(3)(q̄3)

∣∣
q3→−(q1+q2)︸ ︷︷ ︸

tensor integral

• In this talk: numerical construction of N from universal Feynman
rules (dressing) in 4d, 2-loop irreducible (ID1, ID2), reducible (RED)
diagrams

• further tasks:
• Renormalization, Rational Terms
• Reduction (reduction to scalar master integrals, scalar integral

evaluation/library)
• Treatment of IR divergences.
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Outline

Tree Algorithm

One Loop Algorithm

Two Loop Algorithm
Timings and Accuracy

Conclusion

6



Tree Algorithm in OpenLoops

tree( )
virtual real

+
( )

+
( )

real virtual double virtual double real loop squared

+
( )

+
( )

+
( )

+
( )
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Tree Algorithm in OpenLoops: Example

ex1

ex2

ex3

ex4

ex5

wf1wf2wf3w4

A1

start with external wavefunctions
ex1, ex2, ex3, ex4, ex5

wf1=vert_QV_A(ex4,ex5)
wf2=prop_Q_A(wf1)
wf3=vert_QA_V(wf2,ex3)

wf4=vert_VV_V(ex1,ex2)

A1 =cont_VV(wf3, wf4)*den

(Q=fermion, A=anti-fermion,
V=boson)
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Tree Algorithm in OpenLoops: Example

ex1

ex2

ex3

ex4

ex5

wf1

wf2wf3w4

A1

Combine ex4, ex5 into subtree
wf1:

wf1=vert_QV_A(ex4,ex5)

wf2=prop_Q_A(wf1)
wf3=vert_QA_V(wf2,ex3)

wf4=vert_VV_V(ex1,ex2)

A1 =cont_VV(wf3, wf4)*den

(Q=fermion, A=anti-fermion,
V=boson)
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Tree Algorithm in OpenLoops: Example

ex1

ex2

ex3

ex4

ex5

wf1

wf2

wf3w4

A1

Add propagator to wf1:

wf1=vert_QV_A(ex4,ex5)
wf2=prop_Q_A(wf1)

wf3=vert_QA_V(wf2,ex3)

wf4=vert_VV_V(ex1,ex2)

A1 =cont_VV(wf3, wf4)*den

(Q=fermion, A=anti-fermion,
V=boson)
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Tree Algorithm in OpenLoops: Example

ex1

ex2

ex3

ex4

ex5

wf1wf2

wf3

w4

A1

Add next external leg:

wf1=vert_QV_A(ex4,ex5)
wf2=prop_Q_A(wf1)
wf3=vert_QA_V(wf2,ex3)

wf4=vert_VV_V(ex1,ex2)

A1 =cont_VV(wf3, wf4)*den

(Q=fermion, A=anti-fermion,
V=boson)
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Tree Algorithm in OpenLoops: Example

ex1

ex2

ex3

ex4

ex5

wf1wf2wf3

w4

A1

same on the other side:

wf1=vert_QV_A(ex4,ex5)
wf2=prop_Q_A(wf1)
wf3=vert_QA_V(wf2,ex3)

wf4=vert_VV_V(ex1,ex2)

A1 =cont_VV(wf3, wf4)*den

(Q=fermion, A=anti-fermion,
V=boson)
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Tree Algorithm in OpenLoops: Example

ex1

ex2

ex3

ex4

ex5

wf1wf2

wf3w4

A1

contract into full diagram, multi-
ply denominator:

wf1=vert_QV_A(ex4,ex5)
wf2=prop_Q_A(wf1)
wf3=vert_QA_V(wf2,ex3)

wf4=vert_VV_V(ex1,ex2)

A1 =cont_VV(wf3, wf4)*den

(Q=fermion, A=anti-fermion,
V=boson)
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Tree Level Algorithm: Generalized

Recursively construct subtrees (=vertex+propagator):

wσa
a (ka, ha) = σa wa

= σa

wb

wc

=
Xσa
σbσc (kb, kc)
k2

a −m2
a︸ ︷︷ ︸

model dependent

wσb
b (kb, hb) wσc

c (kc , hc)︸ ︷︷ ︸
process dependent

Then contract into full diagram:

M0,Γ(h) = wa wb = C0,Γ · wσa
a (ka, ha) δσaσb w̃σb

b (kb, hb)

• diagrams constructed using universal feynman rules
• subtrees appearing in multiple diagrams are recycled
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One Loop Algorithm in OpenLoops

tree( )
virtual real

+
( )

+
( )

real virtual double virtual double real loop squared

+
( )

+
( )

+
( )

+
( )
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One Loop Algorithm: Example

w5

w4

w1

w3

w2

w6

w5

w4

w1

w6

N

w1 w6 w4 w5

N1N2 N3N4

external subtrees constructed in tree
level algorithm (in combination with
tree level diagrams):
w2,w3 → w6

N0 = 1
N1 = N0 · S1(w1)
N2 = N1 · S2(w6)
N3 = N2 · S3(w4)
N4 = N3 · S4(w5)

=N4
βN
β0

N = Tr(N4
βN
β0

)
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One Loop Algorithm: Example

w5

w4

w1

w3

w2

w6

w5

w4

w1

w6

w6

N

↓

w1 w6 w4 w5

N1N2 N3N4

Open Loop:
Diagram factorizes into chain of
segments: N = S1 · · ·SN

N0 = 1
N1 = N0 · S1(w1)
N2 = N1 · S2(w6)
N3 = N2 · S3(w4)
N4 = N3 · S4(w5)

=N4
βN
β0

N = Tr(N4
βN
β0

)
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One Loop Algorithm: Example

w5

w4

w1

w3

w2

w6

w5

w4

w1

w6

N

↓

w1 w6 w4 w5

N1

N2 N3N4

Dress first segment
(=vertex+propagator+subtree) S1

attaching the external wavefunction
w1.

N0 = 1
N1 = N0 · S1(w1)

N2 = N1 · S2(w6)
N3 = N2 · S3(w4)
N4 = N3 · S4(w5)

=N4
βN
β0

N = Tr(N4
βN
β0

)
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One Loop Algorithm: Example

w5

w4

w1

w3

w2

w6

w5

w4

w1

w6

N

↓

w1 w6 w4 w5

N1

N2

N3N4

Dress second segment attaching the
subtree w6.

N0 = 1
N1 = N0 · S1(w1)
N2 = N1 · S2(w6)

N3 = N2 · S3(w4)
N4 = N3 · S4(w5)

=N4
βN
β0

N = Tr(N4
βN
β0

)
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One Loop Algorithm: Example

w5

w4

w1

w3

w2

w6

w5

w4

w1

w6

N

↓

w1 w6 w4 w5

N1N2

N3

N4

Dress third segment.

N0 = 1
N1 = N0 · S1(w1)
N2 = N1 · S2(w6)
N3 = N2 · S3(w4)

N4 = N3 · S4(w5)

=N4
βN
β0

N = Tr(N4
βN
β0

)
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One Loop Algorithm: Example

w5

w4

w1

w3

w2

w6

w5

w4

w1

w6

N

↓

w1 w6 w4 w5

N1N2 N3

N4

Dress last segment.

N0 = 1
N1 = N0 · S1(w1)
N2 = N1 · S2(w6)
N3 = N2 · S3(w4)
N4 = N3 · S4(w5)

=N4
βN
β0

N = Tr(N4
βN
β0

)

11



One Loop Algorithm: Example

w5

w4

w1

w3

w2

w6

w5

w4

w1

w6

N

↑

w1 w6 w4 w5

N1N2 N3

N4

Close the loop (contract open
Lorentz/spinor indices).

N0 = 1
N1 = N0 · S1(w1)
N2 = N1 · S2(w6)
N3 = N2 · S3(w4)
N4 = N3 · S4(w5)=N4

βN
β0

N = Tr(N4
βN
β0

)
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One Loop Algorithm: Generalized

Segments (=vertex+propagator+subtree(s)) can always be written as:

[
Si (q1, hi )

]βi

βi−1
=

βi−1

wi

ki

Di

βi
=
{[

Y i
σi

]βi

βi−1
+
[

Z i
ν;σi

]βi

βi−1
qν1︸︷︷︸

rank increased
by 1

}
wσi

i (ki , hi )

Partially constructed chain (open loop):

Nn(q1, ĥ(1)
k ) =

k∏
i=1

Si (q1, hi ) = β0

w1

D1

w2

D2

wk

Dk

βk

wk+1

Dk+1

wN−1

DN−1

wN

D0

βN .(1)

Recursion step: Nn = Nn−1 · Sn

• Diagrams factorize into segments

• Universal Feynman Rules (encoded in Y,Z)
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Helicities and Rank

• Final result: scattering probability density ∼
∑

h |M|
2

• Born-Loop interference required (for virtual, real virtual etc.)
• Multiplication with Born and color factor in the beginning of construction

possible → start with maximal helicities of any diagrams
• U0(h) = 2

∑
colM

∗
0C

Helicities may be summed after each dressing step (exploiting factorization):∑
h

U0Tr(N (h)) =
∑
hN

[
· · ·
∑

h2

[∑
h1

U0(h)S1(h1)

]
S2(h2) · · ·

]
SN(hN)

• (in renormalizable theories) each segment:
• increases rank by 1 (or 0)
• decreases total helicities by a factor of # helicities of wavefunction in

the segment
• minimal helicities with maximal rank → efficient, complexity is kept low in

final recursion steps
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Helicities and Rank: Example

w5

w4

w1

w6

↓

w1 w6 w4 w5

2× 2× 2× 2× 2 = #h

N1 N2N3N4

each segment:
• increases rank by 1
• decreases total helicities by a

factor of # helicities of
wavefunction in the segment

helicities=32,
rank=0
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Helicities and Rank: Example

w5

w4

w1

w6

↓

w1 w6 w4 w5

2×

2× 2× 2× 2 = #h

N1

N2N3N4

each segment:
• increases rank by 1
• decreases total helicities by a

factor of # helicities of
wavefunction in the segment

helicities=16,
rank=1
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Helicities and Rank: Example

w5

w4

w1

w6

↓

w1 w6 w4 w5

2× 2× 2×

2× 2 = #h

N1

N2

N3N4

each segment:
• increases rank by 1
• decreases total helicities by a

factor of # helicities of
wavefunction in the segment

helicities=4,
rank=2
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Helicities and Rank: Example

w5

w4

w1

w6

↓

w1 w6 w4 w5

2× 2× 2× 2×

2 = #h

N1 N2

N3

N4

each segment:
• increases rank by 1
• decreases total helicities by a

factor of # helicities of
wavefunction in the segment

helicities=2,
rank=3
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Helicities and Rank: Example

w5

w4

w1

w6

↓

w1 w6 w4 w5

2× 2× 2× 2× 2 = #h

N1 N2N3

N4

each segment:
• increases rank by 1
• decreases total helicities by a

factor of # helicities of
wavefunction in the segment

helicities=1,
rank=4
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Merging

Example:

• After one dressing step subsequent
dressing steps are identical.

• Topology (scalar propagators) is
identical for both diagrams.

• Diagrams can be merged.

For diagrams A,B with identical
segments after n dressing steps (exploit
factorization):

UA,B = U0Tr(NA,B ) = numerator · Born · color

UA + UB = (Un,A · Sn+1 · · · SN ) + (Un,B · Sn+1 · · · SN )

= (Un,A + Un,B ) · Sn+1 · · · SN

Only perform dressing steps n+1 to N
once.

Highly efficient way of dressing a large
number of diagrams for complicated
processes.
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Two Loop Algorithm in OpenLoops

tree( )
virtual real

+
( )

+
( )

real virtual double virtual double real loop squared

+
( )

+
( )

+
( )

+
( )
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Two Loop Algorithm: Components

q2 q1

q3

V0

V1

• chain 1 = longest chain
• chain 2 = middle chain
• chain 3 = shortest chain
• V0,V1= vertices

connecting chains
• q1, q2, q3 = loop momenta

q3 = −q1 − q2

Diagram factorizes into 3 chains and 2 vertices
(matrix multiplications, indices suppressed):

N (q1, q2) =
[
N (1)(q1)

][
N (2)(q2)

][
N (3)(q3)

][
V0(q1,q2)

][
V1(q1,q2)

]∣∣
q3→−(q1+q2)

Each chain in factorizes into segments
N (i)(qi ) = S(i)

0 (qi ) S(i)
1 (qi ) · · · S(i)

Ni−1(qi )

Factorization results in freedom of choice for dressing algorithm.
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Two Loop Algorithm: Naive Approach

V1

V0

V1

1. dress chains N (1)(q1), N (2)(q2), N (3)(q3)

2. combine with vertex V1, closing indices β(1)
N1
,β

(2)
N2
,β

(3)
N3

3. combine with vertex V0, closing indices β(1)
0 ,β

(2)
0 ,β

(3)
0

4. map momenta, loop over helicities

[
N (1)(q1)

] β
(1)
N1

β
(1)
0

[
N (2)(q2)

] β
(2)
N2

β
(2)
0

[
N (3)(q3)

] β
(3)
N3

β
(3)
0

[
V1(q1,q2)

]
β

(1)
N1
β

(2)
N2
β

(3)
N3

[
V0(q1,q2)

]β(1)
0 β

(2)
0 β

(3)
0

∣∣
q3→−(q1+q2)
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Two Loop Algorithm: Naive Approach

V1

V0

V1

1. dress chains N (1)(q1), N (2)(q2), N (3)(q3)

2. combine with vertex V1, closing indices β(1)
N1
,β

(2)
N2
,β

(3)
N3

3. combine with vertex V0, closing indices β(1)
0 ,β

(2)
0 ,β

(3)
0

4. map momenta, loop over helicities

[
N (1)(q1)

] β
(1)
N1

β
(1)
0

[
N (2)(q2)

] β
(2)
N2

β
(2)
0

[
N (3)(q3)

] β
(3)
N3

β
(3)
0

[
V1(q1,q2)

]
β

(1)
N1
β

(2)
N2
β

(3)
N3

[
V0(q1,q2)

]β(1)
0 β

(2)
0 β

(3)
0

∣∣
q3→−(q1+q2)
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Two Loop Algorithm: Naive Approach

V1

V0

V1

1. dress chains N (1)(q1), N (2)(q2), N (3)(q3)

2. combine with vertex V1, closing indices β(1)
N1
,β

(2)
N2
,β

(3)
N3

3. combine with vertex V0, closing indices β(1)
0 ,β

(2)
0 ,β

(3)
0

4. map momenta, loop over helicities

[
N (1)(q1)

] β
(1)
N1

β
(1)
0

[
N (2)(q2)

] β
(2)
N2

β
(2)
0

[
N (3)(q3)

] β
(3)
N3

β
(3)
0

[
V1(q1,q2)

]
β

(1)
N1
β

(2)
N2
β

(3)
N3

[
V0(q1,q2)

]β(1)
0 β

(2)
0 β

(3)
0

∣∣
q3→−(q1+q2)
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Two Loop Algorithm: Naive Approach

V1

V0

V1

1. dress chains N (1)(q1), N (2)(q2), N (3)(q3)

2. combine with vertex V1, closing indices β(1)
N1
,β

(2)
N2
,β

(3)
N3

3. combine with vertex V0, closing indices β(1)
0 ,β

(2)
0 ,β

(3)
0

4. map momenta, loop over helicities

[
N (1)(q1)

] β
(1)
N1

β
(1)
0

[
N (2)(q2)

] β
(2)
N2

β
(2)
0

[
N (3)(q3)

] β
(3)
N3

β
(3)
0

[
V1(q1,q2)

]
β

(1)
N1
β

(2)
N2
β

(3)
N3

[
V0(q1,q2)

]β(1)
0 β

(2)
0 β

(3)
0
∣∣

q3→−(q1+q2)
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Two Loop Algorithm: Observations and Challenges

[
N (1)(q1)

] β
(1)
N1

β
(1)
0

[
N (2)(q2)

] β
(2)
N2

β
(2)
0

[
N (3)(q3)

] β
(3)
N3

β
(3)
0

[
V0(q1,q2)

]β(1)
0 β

(2)
0 β

(3)
0
[
V1(q1,q2)

]
β

(1)
N1
β

(2)
N2
β

(3)
N3

∣∣
q3→−(q1+q2)

1. dress chains N (1)(q1), N (2)(q2), N (3)(q3)

2. combine with vertex V1, closing indices β(1)
N1
β

(2)
N2
β

(3)
N3

3. combine with vertex V0, closing indices β(1)
0 ,β

(2)
0 ,β

(3)
0

4. map momenta, loop over helicities

Observations:
• step 2. is performed for 6 open spinor/Lorentz indices

• step 3. is preformed for 3 open spinor/Lorentz indices

• in step 2,3 we have maximal ranks, as all chains have been fully dressed

• the mapping in step 4 is performed for maximal ranks

• all dressing steps are performed for all helicities

This is very inefficient.
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Cost Simulation for Two Loop Algorithm

• factorization: freedom of order in combining chains and vertices
• full algorithm: N recursion steps with partially dressed numerators
Nn = Nn−1Xn,
with building blocks Xn ∈ {S(i)

k ,Vj ,N (i),M∗0C}
• CPU cost ∼ # multiplications
• → cost simulation tracking # components and multiplications
• test different variants to determine most efficient algorithm for two

loop diagrams
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Two Loop Algorithm in OpenLoops

V0

V1

q3=
−q1−q2

V0

V1

0. Sort chains by length: N1 ≥ N2 ≥ N3, choose order of V0, V1 by vertex type

1a. Initial Condition for chain 1 (longest chain): Born × color factor. Start with
maximal # helicities.

1b. Dress (N (1)(q1) × Born × color) summing helicities at each vertex (as at one
loop).

2. Dress N (3)(q3) , start with no helicities, new helicities enter at each vertex.
3. Attach N (1)(q1), N (3)(q3) to V0 and V1, map q3→−q1−q2, sum hels of N (3)(q3),V1,V0.
4. Attach N (2)(q2) segments to previously constructed object, sum helicities at each

vertex.
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Two Loop Algorithm in OpenLoops

V0

V1

q3=
−q1−q2

V0

V1

0. Sort chains by length: N1 ≥ N2 ≥ N3, choose order of V0, V1 by vertex type
1a. Initial Condition for chain 1 (longest chain): Born × color factor. Start with

maximal # helicities.

1b. Dress (N (1)(q1) × Born × color) summing helicities at each vertex (as at one
loop).

2. Dress N (3)(q3) , start with no helicities, new helicities enter at each vertex.
3. Attach N (1)(q1), N (3)(q3) to V0 and V1, map q3→−q1−q2, sum hels of N (3)(q3),V1,V0.
4. Attach N (2)(q2) segments to previously constructed object, sum helicities at each

vertex.

U(1)
0 = 2

∑
col

CM∗0
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Two Loop Algorithm in OpenLoops

V0

V1

q3=
−q1−q2

V0

V1

0. Sort chains by length: N1 ≥ N2 ≥ N3, choose order of V0, V1 by vertex type
1a. Initial Condition for chain 1 (longest chain): Born × color factor. Start with

maximal # helicities.
1b. Dress (N (1)(q1) × Born × color) summing helicities at each vertex (as at one

loop).

2. Dress N (3)(q3) , start with no helicities, new helicities enter at each vertex.
3. Attach N (1)(q1), N (3)(q3) to V0 and V1, map q3→−q1−q2, sum hels of N (3)(q3),V1,V0.
4. Attach N (2)(q2) segments to previously constructed object, sum helicities at each

vertex.

U(1)
n = U(1)

n−1S(1)
n , U(1)

0 = 2
∑
col

CM∗0
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Two Loop Algorithm in OpenLoops

V0

V1

q3=
−q1−q2

V0

V1

0. Sort chains by length: N1 ≥ N2 ≥ N3, choose order of V0, V1 by vertex type
1a. Initial Condition for chain 1 (longest chain): Born × color factor. Start with

maximal # helicities.
1b. Dress (N (1)(q1) × Born × color) summing helicities at each vertex (as at one

loop).
2. Dress N (3)(q3) , start with no helicities, new helicities enter at each vertex.

3. Attach N (1)(q1), N (3)(q3) to V0 and V1, map q3→−q1−q2, sum hels of N (3)(q3),V1,V0.
4. Attach N (2)(q2) segments to previously constructed object, sum helicities at each

vertex.

N (3)
n (q3) = N (3)

n−1S(3)
n , N (3)

0 = 1,
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Two Loop Algorithm in OpenLoops

V0

V1

q3=
−q1−q2

V0

V1

0. Sort chains by length: N1 ≥ N2 ≥ N3, choose order of V0, V1 by vertex type
1a. Initial Condition for chain 1 (longest chain): Born × color factor. Start with

maximal # helicities.
1b. Dress (N (1)(q1) × Born × color) summing helicities at each vertex (as at one

loop).
2. Dress N (3)(q3) , start with no helicities, new helicities enter at each vertex.
3. Attach N (1)(q1), N (3)(q3) to V0 and V1, map q3→−q1−q2, sum hels of N (3)(q3),V1,V0.

4. Attach N (2)(q2) segments to previously constructed object, sum helicities at each
vertex.

[U(13)]
β

(2)
N2

β
(2)
0

= [U(1)]
β

(1)
N1

β
(1)
0

[N (3)]
β

(3)
N3

β
(3)
0

[
V0(q1,q3)

]β(1)
0 β

(2)
0 β

(3)
0
[
V1(q1,q3)

]
β

(1)
N1
β

(2)
N2
β

(3)
N3

∣∣
q3→−(q1+q2)
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Two Loop Algorithm in OpenLoops

V0

V1

q3=
−q1−q2

V0

V1

0. Sort chains by length: N1 ≥ N2 ≥ N3, choose order of V0, V1 by vertex type
1a. Initial Condition for chain 1 (longest chain): Born × color factor. Start with

maximal # helicities.
1b. Dress (N (1)(q1) × Born × color) summing helicities at each vertex (as at one

loop).
2. Dress N (3)(q3) , start with no helicities, new helicities enter at each vertex.
3. Attach N (1)(q1), N (3)(q3) to V0 and V1, map q3→−q1−q2, sum hels of N (3)(q3),V1,V0.
4. Attach N (2)(q2) segments to previously constructed object, sum helicities at each

vertex.

U(123)
n = U(123)

(n−1)S(2)
n , U(123)

0 = U(13) = U(1)(q1)N (3)(q3)V0(q1,q2)V1(q1,q2)
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Two Loop Algorithm in OpenLoops

V0

V1

q3=
−q1−q2

V0

V1

0. Sort chains by length: N1 ≥ N2 ≥ N3, choose order of V0, V1 by vertex type
1a. Initial Condition for chain 1 (longest chain): Born × color factor. Start with

maximal # helicities.
1b. Dress (N (1)(q1) × Born × color) summing helicities at each vertex (as at one

loop).
2. Dress N (3)(q3) , start with no helicities, new helicities enter at each vertex.
3. Attach N (1)(q1), N (3)(q3) to V0 and V1, map q3→−q1−q2, sum hels of N (3)(q3),V1,V0.
4. Attach N (2)(q2) segments to previously constructed object, sum helicities at each

vertex.

This algorithm is two orders of magnitude faster than the naive approach.
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Pseudotree Test

Test validity and numerical stability of two loop algorithm without computing
tensor integrals.

e1e2
e3 e4

D(1)
0

D(3)
0

D(2)
0

V0

V1

q1 q2

q3

• Insert pseudo wavefunctions e1, e2, e3, e4 → saturate indices
• set q1, q2 to random (constant) values, contract tensor coefficients
Nµ1...µr1ν1...νr2with fixed-value tensor integrand qµ11 ···q

µr1
1 qν12 ···q

νr2
1

D(q1,q2)
• → compare with well tested tree level algorithm
• establish quad precision as benchmark, perfect (16 digit) agreement at

quad precision
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Accuracy

Two loop algorithm using pseudotree mode for 105 uniform random phase space
points. Numerical stability of double (dp) vs quad (qp) precision scattering probability
density W02 =

∑
hel

∑
col 2Re[M∗0M2]:

Process: gg → t̄t
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|log10( )| 
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 in

 %

Process: dd̄ → uūg
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 %

Relative Error: A = |Wdp
02−W

qp
02 |

Min(|Wdp
02 |,|W

qp
02 |)

Excellent numerical stability. Essential for full calculation (tensor integral reduction
will be main source of instabilities).
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Timings for Two Loop Tensor Coefficients

QED, QCD and SM (NNLO QCD) processes (single intel i7-6600U, 2.6 GHz, 16GB
RAM, 1000 psp)

1.0

1.5

2.0

2.5

3.0

3.5

lo
g 1

0(
tim

e 
[m

s]
/p

sp
)

e + e e + e

e + e e + e

gg uu

dd uu

dd uug
uu ttg

gg tt

gg ttg

ud W + gg

uu W + W g

uu ttH

gg ttH

linear fit

2.0 2.5 3.0 3.5 4.0
log10(number of diagrams)

5

10

15

ra
tio

 2
l/(

1l
+

g) average
1l tensor integrals off
1l tensor integrals on

• 2→ 2 process: 6-100ms/psp

• 2→ 3 process: 60-2500ms/psp

Runtime ∝ # diagrams
time/psp/diagram ∼ 150 µs

Constant ratios between NNLO virtual
(2l) and real-virtual (1l+g):

2l (tensor coefficients)
1l+g (tensor coefficients) ∼ 9

2l (tensor coefficients)
1l+g (full calculation) ∼ 4

Strong CPU performance, comparable to real-virtual corrections in OpenLoops.

24



Conclusion

New algorithm for two loop tensor coefficients:

• Excellent numerical stability
• Highly efficient, comparable to real virtual corrections

• determined most efficient algorithm through cost simulation
• exploit factorization of two loop diagrams into chains and vertices for

ideal order
• exploit factorization of chains and on the fly helicity summation for

efficient treatment of individual building blocks.
• merging and recycling of dressing steps.

• Fully implemented for NNLO QED and QCD Corrections to SM (reducible
and irreducible)

• Fully generic algorithm
next steps

• UV counterterms and rational counterterms
• tensor integrals (reduction and evaluation)
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End
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Factorization into Segments

N (q1, q2) =
[
N (1)(q1)

] β
(1)
N1

β
(1)
0

[
N (2)(q2)

] β
(2)
N2

β
(2)
0

[
N (3)(q3)

] β
(3)
N3

β
(3)
0

·

·
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]β(1)
0 β

(2)
0 β

(3)
0
[
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]
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β
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∣∣
q3→−(q1+q2)
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(i)
Ni

β
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Helicities

There are three ways of treating helicities along the three chains of a
two-loop 1PI diagram:

B Global helicity loop (like in OpenLoops 1) → this is sure to be the
most inefficient.

B “Down” method (represented by downward arrows): Use on-the-fly
helicity summation (like in OpenLoops 2), i.e. the number of active
helicities is reduced in each step. Requires interference with Born
before. After each step we have a helicity array with the d.o.f. of
the undressed segments.

B “Up” method (represented by upward arrow): Helicity arrays are
constructed for the d.o.f. of the already dressed segments and
extended in each dressing step by the d.o.f. of the attached
subtree(s).



Rank Optimization Example

Before mapping:
Chain 3 (green) has rank 2, V0V1 have rank 0
→ q2

3 = (−q1 − q2)2 = q2
1 − 2q1q2 + q2

2

rank in q1 is increased by 2 AND rank in q2 is increased by 0
OR
rank in q1 is increased by 0 AND rank in q2 is increased by 2
OR
rank in q1 is increased by 1 AND rank in q2 is increased by 1

maximum ranks in q1 and q2 are not independent,
superfluous ranks can be removed



ranks

component label
r=0 1 1
r=1 q0 2
r=1 q1 3
r=1 q2 4
r=1 q3 5
r=2 q2

0 6
r=2 q1q2 7
r=2 q1q3 8
r=2 q1q4 9
r=2 q2

2 10
... ... ...
r=2 q2

3 15
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