
Automation of NNLO Amplitude Construction
in OpenLoops

Natalie Schär
June 1, 2021

in collaboration with:
S. Pozzorini and M. F. Zoller

NNLO in OpenLoops

Monte Carlo Simulation contains:

• Hard Scattering Amplitudes → OpenLoops
• PDFs, Parton Shower, Hadronisation, Underlying Events

OpenLoops constructs Amplitudes from Feynman Diagrams.

σpart ∼
()

∼ α2
s LO

+
()

+
()

∼ α3
s NLO

+
()

+
()

+
()

+
()

∼ α4
s NNLO

NNLO required for LHC.

1

Components to NNLO

Some components to NNLO are a available in the public version of OpenLoops:

tree()
︸ ︷︷ ︸

available

virtual real

+
()

+
()

︸ ︷︷ ︸
available

real virtual double virtual double real loop squared

+
()
︸ ︷︷ ︸

(available)

+
()
︸ ︷︷ ︸

new!

+
()
︸ ︷︷ ︸

(available)

+
()
︸ ︷︷ ︸

available

Double virtual required for NNLO.

2

Components to NNLO

Distinguish three types of double virtual diagrams.

tree()
virtual real

+
()

+
()

real virtual double virtual double real loop squared

+
()

+
()

+
()

+
()

ID2

︸ ︷︷ ︸
new

ID1

︸ ︷︷ ︸
(new)

RED

︸ ︷︷ ︸
(new)

3

Components to NNLO

For one diagram Γ:
renormalized Amplitude (D dimensions) =M2,Γ(4d numerator, D-dim denominator)
+ rational and UV counterterms (in lower loop diagrams)

M2,Γ =

w(1)
1

w(1)
2

w(1)

N1−1

D(1)
0

D(1)
1

D(1)

N1−1

w(3)
1

w(3)

N3−1

D(3)
0

D(3)
N3−1

w(2)
1

w(2)
2

w(2)

N2−1

D(2)
0

D(2)
1

D(2)

N2−1

V0

V1

q1 q2

q3

= C2,Γ︸︷︷︸
color

R1∑
r1=0

R2∑
r2=0

Nµ1···µr1ν1···νr2︸ ︷︷ ︸
tensor coefficient

∫
dq̄1

∫
dq̄2

qµ11 · · · q
µr1
1 qν12 · · · q

νr2
2

D(1)(q̄1)D(2)(q̄2)D(3)(q̄3)

∣∣
q3→−(q1+q2)︸ ︷︷ ︸

tensor integral

In OpenLoops:
• tensor coefficients constructed numerically → in 4 dimensions
• restore coefficients to D dimensions by rational counterterms
• denominators kept analytical

4

Components to NNLO Calculation

M2,Γ = C2,Γ

R1∑
r1=0

R2∑
r2=0

Nµ1···µr1ν1···νr2︸ ︷︷ ︸
tensor coefficient

∫
dq̄1

∫
dq̄2

qµ11 · · · q
µr1
1 qν12 · · · q

νr2
2

D(1)(q̄1)D(2)(q̄2)D(3)(q̄3)

∣∣
q3→−(q1+q2)︸ ︷︷ ︸

tensor integral

• In this talk: numerical construction of N from universal Feynman
rules (dressing) in 4d, 2-loop irreducible (ID1, ID2), reducible (RED)
diagrams

• further tasks:
• Renormalization, Rational Terms
• Reduction (reduction to scalar master integrals, scalar integral

evaluation/library)
• Treatment of IR divergences.

5

Outline

Tree Algorithm

One Loop Algorithm

Two Loop Algorithm
Timings and Accuracy

Conclusion

6

Tree Algorithm in OpenLoops

tree()
virtual real

+
()

+
()

real virtual double virtual double real loop squared

+
()

+
()

+
()

+
()

7

Tree Algorithm in OpenLoops: Example

ex1

ex2

ex3

ex4

ex5

wf1wf2wf3w4

A1

start with external wavefunctions
ex1, ex2, ex3, ex4, ex5

wf1=vert_QV_A(ex4,ex5)
wf2=prop_Q_A(wf1)
wf3=vert_QA_V(wf2,ex3)

wf4=vert_VV_V(ex1,ex2)

A1 =cont_VV(wf3, wf4)*den

(Q=fermion, A=anti-fermion,
V=boson)

8

Tree Algorithm in OpenLoops: Example

ex1

ex2

ex3

ex4

ex5

wf1

wf2wf3w4

A1

Combine ex4, ex5 into subtree
wf1:

wf1=vert_QV_A(ex4,ex5)

wf2=prop_Q_A(wf1)
wf3=vert_QA_V(wf2,ex3)

wf4=vert_VV_V(ex1,ex2)

A1 =cont_VV(wf3, wf4)*den

(Q=fermion, A=anti-fermion,
V=boson)

8

Tree Algorithm in OpenLoops: Example

ex1

ex2

ex3

ex4

ex5

wf1

wf2

wf3w4

A1

Add propagator to wf1:

wf1=vert_QV_A(ex4,ex5)
wf2=prop_Q_A(wf1)

wf3=vert_QA_V(wf2,ex3)

wf4=vert_VV_V(ex1,ex2)

A1 =cont_VV(wf3, wf4)*den

(Q=fermion, A=anti-fermion,
V=boson)

8

Tree Algorithm in OpenLoops: Example

ex1

ex2

ex3

ex4

ex5

wf1wf2

wf3

w4

A1

Add next external leg:

wf1=vert_QV_A(ex4,ex5)
wf2=prop_Q_A(wf1)
wf3=vert_QA_V(wf2,ex3)

wf4=vert_VV_V(ex1,ex2)

A1 =cont_VV(wf3, wf4)*den

(Q=fermion, A=anti-fermion,
V=boson)

8

Tree Algorithm in OpenLoops: Example

ex1

ex2

ex3

ex4

ex5

wf1wf2wf3

w4

A1

same on the other side:

wf1=vert_QV_A(ex4,ex5)
wf2=prop_Q_A(wf1)
wf3=vert_QA_V(wf2,ex3)

wf4=vert_VV_V(ex1,ex2)

A1 =cont_VV(wf3, wf4)*den

(Q=fermion, A=anti-fermion,
V=boson)

8

Tree Algorithm in OpenLoops: Example

ex1

ex2

ex3

ex4

ex5

wf1wf2

wf3w4

A1

contract into full diagram, multi-
ply denominator:

wf1=vert_QV_A(ex4,ex5)
wf2=prop_Q_A(wf1)
wf3=vert_QA_V(wf2,ex3)

wf4=vert_VV_V(ex1,ex2)

A1 =cont_VV(wf3, wf4)*den

(Q=fermion, A=anti-fermion,
V=boson)

8

Tree Level Algorithm: Generalized

Recursively construct subtrees (=vertex+propagator):

wσa
a (ka, ha) = σa wa

= σa

wb

wc

=
Xσa
σbσc (kb, kc)
k2

a −m2
a︸ ︷︷ ︸

model dependent

wσb
b (kb, hb) wσc

c (kc , hc)︸ ︷︷ ︸
process dependent

Then contract into full diagram:

M0,Γ(h) = wa wb = C0,Γ · wσa
a (ka, ha) δσaσb w̃σb

b (kb, hb)

• diagrams constructed using universal feynman rules
• subtrees appearing in multiple diagrams are recycled

9

One Loop Algorithm in OpenLoops

tree()
virtual real

+
()

+
()

real virtual double virtual double real loop squared

+
()

+
()

+
()

+
()

10

One Loop Algorithm: Example

w5

w4

w1

w3

w2

w6

w5

w4

w1

w6

N

w1 w6 w4 w5

N1N2 N3N4

external subtrees constructed in tree
level algorithm (in combination with
tree level diagrams):
w2,w3 → w6

N0 = 1
N1 = N0 · S1(w1)
N2 = N1 · S2(w6)
N3 = N2 · S3(w4)
N4 = N3 · S4(w5)

=N4
βN
β0

N = Tr(N4
βN
β0

)

11

One Loop Algorithm: Example

w5

w4

w1

w3

w2

w6

w5

w4

w1

w6

w6

N

↓

w1 w6 w4 w5

N1N2 N3N4

Open Loop:
Diagram factorizes into chain of
segments: N = S1 · · ·SN

N0 = 1
N1 = N0 · S1(w1)
N2 = N1 · S2(w6)
N3 = N2 · S3(w4)
N4 = N3 · S4(w5)

=N4
βN
β0

N = Tr(N4
βN
β0

)

11

One Loop Algorithm: Example

w5

w4

w1

w3

w2

w6

w5

w4

w1

w6

N

↓

w1 w6 w4 w5

N1

N2 N3N4

Dress first segment
(=vertex+propagator+subtree) S1

attaching the external wavefunction
w1.

N0 = 1
N1 = N0 · S1(w1)

N2 = N1 · S2(w6)
N3 = N2 · S3(w4)
N4 = N3 · S4(w5)

=N4
βN
β0

N = Tr(N4
βN
β0

)

11

One Loop Algorithm: Example

w5

w4

w1

w3

w2

w6

w5

w4

w1

w6

N

↓

w1 w6 w4 w5

N1

N2

N3N4

Dress second segment attaching the
subtree w6.

N0 = 1
N1 = N0 · S1(w1)
N2 = N1 · S2(w6)

N3 = N2 · S3(w4)
N4 = N3 · S4(w5)

=N4
βN
β0

N = Tr(N4
βN
β0

)

11

One Loop Algorithm: Example

w5

w4

w1

w3

w2

w6

w5

w4

w1

w6

N

↓

w1 w6 w4 w5

N1N2

N3

N4

Dress third segment.

N0 = 1
N1 = N0 · S1(w1)
N2 = N1 · S2(w6)
N3 = N2 · S3(w4)

N4 = N3 · S4(w5)

=N4
βN
β0

N = Tr(N4
βN
β0

)

11

One Loop Algorithm: Example

w5

w4

w1

w3

w2

w6

w5

w4

w1

w6

N

↓

w1 w6 w4 w5

N1N2 N3

N4

Dress last segment.

N0 = 1
N1 = N0 · S1(w1)
N2 = N1 · S2(w6)
N3 = N2 · S3(w4)
N4 = N3 · S4(w5)

=N4
βN
β0

N = Tr(N4
βN
β0

)

11

One Loop Algorithm: Example

w5

w4

w1

w3

w2

w6

w5

w4

w1

w6

N

↑

w1 w6 w4 w5

N1N2 N3

N4

Close the loop (contract open
Lorentz/spinor indices).

N0 = 1
N1 = N0 · S1(w1)
N2 = N1 · S2(w6)
N3 = N2 · S3(w4)
N4 = N3 · S4(w5)=N4

βN
β0

N = Tr(N4
βN
β0

)

11

One Loop Algorithm: Generalized

Segments (=vertex+propagator+subtree(s)) can always be written as:

[
Si (q1, hi)

]βi

βi−1
=

βi−1

wi

ki

Di

βi
=
{[

Y i
σi

]βi

βi−1
+
[

Z i
ν;σi

]βi

βi−1
qν1︸︷︷︸

rank increased
by 1

}
wσi

i (ki , hi)

Partially constructed chain (open loop):

Nn(q1, ĥ(1)
k) =

k∏
i=1

Si (q1, hi) = β0

w1

D1

w2

D2

wk

Dk

βk

wk+1

Dk+1

wN−1

DN−1

wN

D0

βN .(1)

Recursion step: Nn = Nn−1 · Sn

• Diagrams factorize into segments

• Universal Feynman Rules (encoded in Y,Z)

12

Helicities and Rank

• Final result: scattering probability density ∼
∑

h |M|
2

• Born-Loop interference required (for virtual, real virtual etc.)
• Multiplication with Born and color factor in the beginning of construction

possible → start with maximal helicities of any diagrams
• U0(h) = 2

∑
colM

∗
0C

Helicities may be summed after each dressing step (exploiting factorization):∑
h

U0Tr(N (h)) =
∑
hN

[
· · ·
∑

h2

[∑
h1

U0(h)S1(h1)

]
S2(h2) · · ·

]
SN(hN)

• (in renormalizable theories) each segment:
• increases rank by 1 (or 0)
• decreases total helicities by a factor of # helicities of wavefunction in

the segment
• minimal helicities with maximal rank → efficient, complexity is kept low in

final recursion steps

13

Helicities and Rank: Example

w5

w4

w1

w6

↓

w1 w6 w4 w5

2× 2× 2× 2× 2 = #h

N1 N2N3N4

each segment:
• increases rank by 1
• decreases total helicities by a

factor of # helicities of
wavefunction in the segment

helicities=32,
rank=0

14

Helicities and Rank: Example

w5

w4

w1

w6

↓

w1 w6 w4 w5

2×

2× 2× 2× 2 = #h

N1

N2N3N4

each segment:
• increases rank by 1
• decreases total helicities by a

factor of # helicities of
wavefunction in the segment

helicities=16,
rank=1

14

Helicities and Rank: Example

w5

w4

w1

w6

↓

w1 w6 w4 w5

2× 2× 2×

2× 2 = #h

N1

N2

N3N4

each segment:
• increases rank by 1
• decreases total helicities by a

factor of # helicities of
wavefunction in the segment

helicities=4,
rank=2

14

Helicities and Rank: Example

w5

w4

w1

w6

↓

w1 w6 w4 w5

2× 2× 2× 2×

2 = #h

N1 N2

N3

N4

each segment:
• increases rank by 1
• decreases total helicities by a

factor of # helicities of
wavefunction in the segment

helicities=2,
rank=3

14

Helicities and Rank: Example

w5

w4

w1

w6

↓

w1 w6 w4 w5

2× 2× 2× 2× 2 = #h

N1 N2N3

N4

each segment:
• increases rank by 1
• decreases total helicities by a

factor of # helicities of
wavefunction in the segment

helicities=1,
rank=4

14

Merging

Example:

• After one dressing step subsequent
dressing steps are identical.

• Topology (scalar propagators) is
identical for both diagrams.

• Diagrams can be merged.

For diagrams A,B with identical
segments after n dressing steps (exploit
factorization):

UA,B = U0Tr(NA,B) = numerator · Born · color

UA + UB = (Un,A · Sn+1 · · · SN) + (Un,B · Sn+1 · · · SN)

= (Un,A + Un,B) · Sn+1 · · · SN

Only perform dressing steps n+1 to N
once.

Highly efficient way of dressing a large
number of diagrams for complicated
processes.

15

Two Loop Algorithm in OpenLoops

tree()
virtual real

+
()

+
()

real virtual double virtual double real loop squared

+
()

+
()

+
()

+
()

16

Two Loop Algorithm: Components

q2 q1

q3

V0

V1

• chain 1 = longest chain
• chain 2 = middle chain
• chain 3 = shortest chain
• V0,V1= vertices

connecting chains
• q1, q2, q3 = loop momenta

q3 = −q1 − q2

Diagram factorizes into 3 chains and 2 vertices
(matrix multiplications, indices suppressed):

N (q1, q2) =
[
N (1)(q1)

][
N (2)(q2)

][
N (3)(q3)

][
V0(q1,q2)

][
V1(q1,q2)

]∣∣
q3→−(q1+q2)

Each chain in factorizes into segments
N (i)(qi) = S(i)

0 (qi) S(i)
1 (qi) · · · S(i)

Ni−1(qi)

Factorization results in freedom of choice for dressing algorithm.
17

Two Loop Algorithm: Naive Approach

V1

V0

V1

1. dress chains N (1)(q1), N (2)(q2), N (3)(q3)

2. combine with vertex V1, closing indices β(1)
N1
,β

(2)
N2
,β

(3)
N3

3. combine with vertex V0, closing indices β(1)
0 ,β

(2)
0 ,β

(3)
0

4. map momenta, loop over helicities

[
N (1)(q1)

] β
(1)
N1

β
(1)
0

[
N (2)(q2)

] β
(2)
N2

β
(2)
0

[
N (3)(q3)

] β
(3)
N3

β
(3)
0

[
V1(q1,q2)

]
β

(1)
N1
β

(2)
N2
β

(3)
N3

[
V0(q1,q2)

]β(1)
0 β

(2)
0 β

(3)
0

∣∣
q3→−(q1+q2)

18

Two Loop Algorithm: Naive Approach

V1

V0

V1

1. dress chains N (1)(q1), N (2)(q2), N (3)(q3)

2. combine with vertex V1, closing indices β(1)
N1
,β

(2)
N2
,β

(3)
N3

3. combine with vertex V0, closing indices β(1)
0 ,β

(2)
0 ,β

(3)
0

4. map momenta, loop over helicities

[
N (1)(q1)

] β
(1)
N1

β
(1)
0

[
N (2)(q2)

] β
(2)
N2

β
(2)
0

[
N (3)(q3)

] β
(3)
N3

β
(3)
0

[
V1(q1,q2)

]
β

(1)
N1
β

(2)
N2
β

(3)
N3

[
V0(q1,q2)

]β(1)
0 β

(2)
0 β

(3)
0

∣∣
q3→−(q1+q2)

18

Two Loop Algorithm: Naive Approach

V1

V0

V1

1. dress chains N (1)(q1), N (2)(q2), N (3)(q3)

2. combine with vertex V1, closing indices β(1)
N1
,β

(2)
N2
,β

(3)
N3

3. combine with vertex V0, closing indices β(1)
0 ,β

(2)
0 ,β

(3)
0

4. map momenta, loop over helicities

[
N (1)(q1)

] β
(1)
N1

β
(1)
0

[
N (2)(q2)

] β
(2)
N2

β
(2)
0

[
N (3)(q3)

] β
(3)
N3

β
(3)
0

[
V1(q1,q2)

]
β

(1)
N1
β

(2)
N2
β

(3)
N3

[
V0(q1,q2)

]β(1)
0 β

(2)
0 β

(3)
0

∣∣
q3→−(q1+q2)

18

Two Loop Algorithm: Naive Approach

V1

V0

V1

1. dress chains N (1)(q1), N (2)(q2), N (3)(q3)

2. combine with vertex V1, closing indices β(1)
N1
,β

(2)
N2
,β

(3)
N3

3. combine with vertex V0, closing indices β(1)
0 ,β

(2)
0 ,β

(3)
0

4. map momenta, loop over helicities

[
N (1)(q1)

] β
(1)
N1

β
(1)
0

[
N (2)(q2)

] β
(2)
N2

β
(2)
0

[
N (3)(q3)

] β
(3)
N3

β
(3)
0

[
V1(q1,q2)

]
β

(1)
N1
β

(2)
N2
β

(3)
N3

[
V0(q1,q2)

]β(1)
0 β

(2)
0 β

(3)
0
∣∣

q3→−(q1+q2)

18

Two Loop Algorithm: Observations and Challenges

[
N (1)(q1)

] β
(1)
N1

β
(1)
0

[
N (2)(q2)

] β
(2)
N2

β
(2)
0

[
N (3)(q3)

] β
(3)
N3

β
(3)
0

[
V0(q1,q2)

]β(1)
0 β

(2)
0 β

(3)
0
[
V1(q1,q2)

]
β

(1)
N1
β

(2)
N2
β

(3)
N3

∣∣
q3→−(q1+q2)

1. dress chains N (1)(q1), N (2)(q2), N (3)(q3)

2. combine with vertex V1, closing indices β(1)
N1
β

(2)
N2
β

(3)
N3

3. combine with vertex V0, closing indices β(1)
0 ,β

(2)
0 ,β

(3)
0

4. map momenta, loop over helicities

Observations:
• step 2. is performed for 6 open spinor/Lorentz indices

• step 3. is preformed for 3 open spinor/Lorentz indices

• in step 2,3 we have maximal ranks, as all chains have been fully dressed

• the mapping in step 4 is performed for maximal ranks

• all dressing steps are performed for all helicities

This is very inefficient.

19

Cost Simulation for Two Loop Algorithm

• factorization: freedom of order in combining chains and vertices
• full algorithm: N recursion steps with partially dressed numerators
Nn = Nn−1Xn,
with building blocks Xn ∈ {S(i)

k ,Vj ,N (i),M∗0C}
• CPU cost ∼ # multiplications
• → cost simulation tracking # components and multiplications
• test different variants to determine most efficient algorithm for two

loop diagrams

20

Two Loop Algorithm in OpenLoops

V0

V1

q3=
−q1−q2

V0

V1

0. Sort chains by length: N1 ≥ N2 ≥ N3, choose order of V0, V1 by vertex type

1a. Initial Condition for chain 1 (longest chain): Born × color factor. Start with
maximal # helicities.

1b. Dress (N (1)(q1) × Born × color) summing helicities at each vertex (as at one
loop).

2. Dress N (3)(q3) , start with no helicities, new helicities enter at each vertex.
3. Attach N (1)(q1), N (3)(q3) to V0 and V1, map q3→−q1−q2, sum hels of N (3)(q3),V1,V0.
4. Attach N (2)(q2) segments to previously constructed object, sum helicities at each

vertex.

21

Two Loop Algorithm in OpenLoops

V0

V1

q3=
−q1−q2

V0

V1

0. Sort chains by length: N1 ≥ N2 ≥ N3, choose order of V0, V1 by vertex type
1a. Initial Condition for chain 1 (longest chain): Born × color factor. Start with

maximal # helicities.

1b. Dress (N (1)(q1) × Born × color) summing helicities at each vertex (as at one
loop).

2. Dress N (3)(q3) , start with no helicities, new helicities enter at each vertex.
3. Attach N (1)(q1), N (3)(q3) to V0 and V1, map q3→−q1−q2, sum hels of N (3)(q3),V1,V0.
4. Attach N (2)(q2) segments to previously constructed object, sum helicities at each

vertex.

U(1)
0 = 2

∑
col

CM∗0

21

Two Loop Algorithm in OpenLoops

V0

V1

q3=
−q1−q2

V0

V1

0. Sort chains by length: N1 ≥ N2 ≥ N3, choose order of V0, V1 by vertex type
1a. Initial Condition for chain 1 (longest chain): Born × color factor. Start with

maximal # helicities.
1b. Dress (N (1)(q1) × Born × color) summing helicities at each vertex (as at one

loop).

2. Dress N (3)(q3) , start with no helicities, new helicities enter at each vertex.
3. Attach N (1)(q1), N (3)(q3) to V0 and V1, map q3→−q1−q2, sum hels of N (3)(q3),V1,V0.
4. Attach N (2)(q2) segments to previously constructed object, sum helicities at each

vertex.

U(1)
n = U(1)

n−1S(1)
n , U(1)

0 = 2
∑
col

CM∗0

21

Two Loop Algorithm in OpenLoops

V0

V1

q3=
−q1−q2

V0

V1

0. Sort chains by length: N1 ≥ N2 ≥ N3, choose order of V0, V1 by vertex type
1a. Initial Condition for chain 1 (longest chain): Born × color factor. Start with

maximal # helicities.
1b. Dress (N (1)(q1) × Born × color) summing helicities at each vertex (as at one

loop).
2. Dress N (3)(q3) , start with no helicities, new helicities enter at each vertex.

3. Attach N (1)(q1), N (3)(q3) to V0 and V1, map q3→−q1−q2, sum hels of N (3)(q3),V1,V0.
4. Attach N (2)(q2) segments to previously constructed object, sum helicities at each

vertex.

N (3)
n (q3) = N (3)

n−1S(3)
n , N (3)

0 = 1,

21

Two Loop Algorithm in OpenLoops

V0

V1

q3=
−q1−q2

V0

V1

0. Sort chains by length: N1 ≥ N2 ≥ N3, choose order of V0, V1 by vertex type
1a. Initial Condition for chain 1 (longest chain): Born × color factor. Start with

maximal # helicities.
1b. Dress (N (1)(q1) × Born × color) summing helicities at each vertex (as at one

loop).
2. Dress N (3)(q3) , start with no helicities, new helicities enter at each vertex.
3. Attach N (1)(q1), N (3)(q3) to V0 and V1, map q3→−q1−q2, sum hels of N (3)(q3),V1,V0.

4. Attach N (2)(q2) segments to previously constructed object, sum helicities at each
vertex.

[U(13)]
β

(2)
N2

β
(2)
0

= [U(1)]
β

(1)
N1

β
(1)
0

[N (3)]
β

(3)
N3

β
(3)
0

[
V0(q1,q3)

]β(1)
0 β

(2)
0 β

(3)
0
[
V1(q1,q3)

]
β

(1)
N1
β

(2)
N2
β

(3)
N3

∣∣
q3→−(q1+q2)

21

Two Loop Algorithm in OpenLoops

V0

V1

q3=
−q1−q2

V0

V1

0. Sort chains by length: N1 ≥ N2 ≥ N3, choose order of V0, V1 by vertex type
1a. Initial Condition for chain 1 (longest chain): Born × color factor. Start with

maximal # helicities.
1b. Dress (N (1)(q1) × Born × color) summing helicities at each vertex (as at one

loop).
2. Dress N (3)(q3) , start with no helicities, new helicities enter at each vertex.
3. Attach N (1)(q1), N (3)(q3) to V0 and V1, map q3→−q1−q2, sum hels of N (3)(q3),V1,V0.
4. Attach N (2)(q2) segments to previously constructed object, sum helicities at each

vertex.

U(123)
n = U(123)

(n−1)S(2)
n , U(123)

0 = U(13) = U(1)(q1)N (3)(q3)V0(q1,q2)V1(q1,q2)

21

Two Loop Algorithm in OpenLoops

V0

V1

q3=
−q1−q2

V0

V1

0. Sort chains by length: N1 ≥ N2 ≥ N3, choose order of V0, V1 by vertex type
1a. Initial Condition for chain 1 (longest chain): Born × color factor. Start with

maximal # helicities.
1b. Dress (N (1)(q1) × Born × color) summing helicities at each vertex (as at one

loop).
2. Dress N (3)(q3) , start with no helicities, new helicities enter at each vertex.
3. Attach N (1)(q1), N (3)(q3) to V0 and V1, map q3→−q1−q2, sum hels of N (3)(q3),V1,V0.
4. Attach N (2)(q2) segments to previously constructed object, sum helicities at each

vertex.

This algorithm is two orders of magnitude faster than the naive approach.

21

Pseudotree Test

Test validity and numerical stability of two loop algorithm without computing
tensor integrals.

e1e2
e3 e4

D(1)
0

D(3)
0

D(2)
0

V0

V1

q1 q2

q3

• Insert pseudo wavefunctions e1, e2, e3, e4 → saturate indices
• set q1, q2 to random (constant) values, contract tensor coefficients
Nµ1...µr1ν1...νr2with fixed-value tensor integrand qµ11 ···q

µr1
1 qν12 ···q

νr2
1

D(q1,q2)
• → compare with well tested tree level algorithm
• establish quad precision as benchmark, perfect (16 digit) agreement at

quad precision
22

Accuracy

Two loop algorithm using pseudotree mode for 105 uniform random phase space
points. Numerical stability of double (dp) vs quad (qp) precision scattering probability
density W02 =

∑
hel

∑
col 2Re[M∗0M2]:

Process: gg → t̄t

11 12 13 14 15 16
|log10()|

0

10

20

30

40

50

60

ra
tio

 o
f p

sp
 in

 %

Process: dd̄ → uūg

10 11 12 13 14 15 16
|log10()|

0

10

20

30

40

50

60

ra
tio

 o
f p

sp
 in

 %

Relative Error: A = |Wdp
02−W

qp
02 |

Min(|Wdp
02 |,|W

qp
02 |)

Excellent numerical stability. Essential for full calculation (tensor integral reduction
will be main source of instabilities).

23

Timings for Two Loop Tensor Coefficients

QED, QCD and SM (NNLO QCD) processes (single intel i7-6600U, 2.6 GHz, 16GB
RAM, 1000 psp)

1.0

1.5

2.0

2.5

3.0

3.5

lo
g 1

0(
tim

e
[m

s]
/p

sp
)

e + e e + e

e + e e + e

gg uu

dd uu

dd uug
uu ttg

gg tt

gg ttg

ud W + gg

uu W + W g

uu ttH

gg ttH

linear fit

2.0 2.5 3.0 3.5 4.0
log10(number of diagrams)

5

10

15

ra
tio

 2
l/(

1l
+

g) average
1l tensor integrals off
1l tensor integrals on

• 2→ 2 process: 6-100ms/psp

• 2→ 3 process: 60-2500ms/psp

Runtime ∝ # diagrams
time/psp/diagram ∼ 150 µs

Constant ratios between NNLO virtual
(2l) and real-virtual (1l+g):

2l (tensor coefficients)
1l+g (tensor coefficients) ∼ 9

2l (tensor coefficients)
1l+g (full calculation) ∼ 4

Strong CPU performance, comparable to real-virtual corrections in OpenLoops.

24

Conclusion

New algorithm for two loop tensor coefficients:

• Excellent numerical stability
• Highly efficient, comparable to real virtual corrections

• determined most efficient algorithm through cost simulation
• exploit factorization of two loop diagrams into chains and vertices for

ideal order
• exploit factorization of chains and on the fly helicity summation for

efficient treatment of individual building blocks.
• merging and recycling of dressing steps.

• Fully implemented for NNLO QED and QCD Corrections to SM (reducible
and irreducible)

• Fully generic algorithm
next steps

• UV counterterms and rational counterterms
• tensor integrals (reduction and evaluation)

25

End

25

Factorization into Segments

N (q1, q2) =
[
N (1)(q1)

] β
(1)
N1

β
(1)
0

[
N (2)(q2)

] β
(2)
N2

β
(2)
0

[
N (3)(q3)

] β
(3)
N3

β
(3)
0

·

·
[
V0(q1, q2)

]β(1)
0 β

(2)
0 β

(3)
0
[
V1(q1, q2)

]
β

(1)
N1
β

(2)
N2
β

(3)
N3

∣∣
q3→−(q1+q2)

N (i)(qi)
β

(i)
Ni

β
(i)
0

= S(i)
0 (qi)

β
(i)
1

β
(i)
0

S(i)
1 (qi)

β
(i)
2

β
(i)
1
· · · S(i)

Ni−1(qi)
β

(i)
Ni

β
(i)
Ni−1

Helicities

There are three ways of treating helicities along the three chains of a
two-loop 1PI diagram:

B Global helicity loop (like in OpenLoops 1) → this is sure to be the
most inefficient.

B “Down” method (represented by downward arrows): Use on-the-fly
helicity summation (like in OpenLoops 2), i.e. the number of active
helicities is reduced in each step. Requires interference with Born
before. After each step we have a helicity array with the d.o.f. of
the undressed segments.

B “Up” method (represented by upward arrow): Helicity arrays are
constructed for the d.o.f. of the already dressed segments and
extended in each dressing step by the d.o.f. of the attached
subtree(s).

Rank Optimization Example

Before mapping:
Chain 3 (green) has rank 2, V0V1 have rank 0
→ q2

3 = (−q1 − q2)2 = q2
1 − 2q1q2 + q2

2

rank in q1 is increased by 2 AND rank in q2 is increased by 0
OR
rank in q1 is increased by 0 AND rank in q2 is increased by 2
OR
rank in q1 is increased by 1 AND rank in q2 is increased by 1

maximum ranks in q1 and q2 are not independent,
superfluous ranks can be removed

ranks

component label
r=0 1 1
r=1 q0 2
r=1 q1 3
r=1 q2 4
r=1 q3 5
r=2 q2

0 6
r=2 q1q2 7
r=2 q1q3 8
r=2 q1q4 9
r=2 q2

2 10
...
r=2 q2

3 15

	Introduction
	Tree Algorithm
	One Loop Algorithm
	Two Loop Algorithm
	Timings and Accuracy

	Conclusion
	backup
	Appendix

