Timing Study and Optimization of ATLASPix3 a full-scale HV-MAPS Prototype

DPG 17. 3. 2021 Dohun Kim Universität Heidelberg T 64.9 Session

- Motivated by ATLAS upgrade
 - developed by ATLAS HV-MAPS collaboration
 - designed by Prof. Ivan Peric

• A full scale HV-MAPS prototype

- implemented in an 180 nm HV-CMOS by TSI
- \circ substrate resistivity of 200 Ω cm
- \circ wafer thinned to 100 μ m
- \circ ~ a pixel size of 150 μm x 50 μm
- the pixel matrix 132 column x 372 row
- in-pixel comparator

Pixel & Periphery Cell

- Signal inputs
 - artificial injection signal
 - collected charges in the sensor diode
- Charge Sensitive Amplifier (CSA)
- In-pixel NMOS-comparator
- Signals are driven to periphery by the line driver
- Periphery
 - signal is digitized by edge detector
- State machine
 - hits are encoded by 8b/10b encoder and serialized
 - send out data via a 1.25Gb/s LVDS Link

• Beam telescope

- consist of 3 reference layers, device under test (DUT) layer and two scintillating tiles as time reference
- measured track efficiency and noise
- T 64.1 D.M. Immig : A Very Large HV-MAPS Tracking Telescope

• Efficiency

- linear fit using hits in reference layers
- reconstructed tracks are compared to hits in DUT layer
 - If matched : count as matched hit
 - If not matched : count as noise
- definition of efficiency

 $\epsilon = N_{\rm tracks associated with a hit}/N_{\rm total tracks}$

- Noise
 - electric noise, scattering and inefficiency of telescope etc.

Time Resolution

• Time resolution

- time difference distribution = $TS1_{DUT}$ T_{ref}
- time difference distribution => Gaussian
- \circ uncertainty sigma σ from Gaussian fit
 - σ = time resolution

Line Delay

Cross section of metal Layers

• Delay

- capacitive couplings of the used metal layers causes delay
- small difference length of metal layers at periphery cells.
- three metal layers (M 4,5,T) for signal line routing

Time Walk Correction

• Time over Threshold (ToT)

- the time difference between two timestamps by one signal pulse
 - ToT = TS1 TS2
- ToT depends on the deposited charges
 Landau distribution
- ∆t latency : different signal amplitudes
 correction : time walk correction

Time Walk Correction

Efficiency at PSI & Power Consumption

• Efficiency

- over 99% with threshold level smaller than ~90mV
- noise rate < 2Hz/pixel
- Power consumption

current	Power	Power/surface	
[mA]	[mW]	[mW/cm²]	
~400	~630	~140	

[L. Mandok, Bachelor Thesis]

Time Resolution for Single Pixels at PSI

• Time resolution for single pixels

Correction	Time resolution [ns]		
uncorrected	6.7 ± 0.5		
Full corrected	4.1 ± 0.1		

Summary

- Time resolution with a optimized configuration
 - high efficiency : > 99 %
 - time resolution for single pixels
 - uncorrected : (6.7 ± 0.5) ns
 - full corrected : (4.1 ± 0.1) ns
- The result is not enough for upgraded LHC
 - requirement : 99% efficiency in the time frame of 25 ns with a sigma of 5 ns
 - requires in-pixel-correction
- However,
 - Mighty Pixel for LHCb is based on ATLASPix3
 - T 14.8 A.M. Gonzalez : CAD Simulation and Testbeam characterization studies of High-Voltage Monolithic Active Pixel Sensors
 - ATLASPix3.1 submitted

Backup : Pixel Cell - CSA

• CSA

- VNPix is current source for CSA
- VPLoadPix is the feedback capacity
- VNFBPix is the feedback resistivity which discharges the capacity
- VNFollPix is source follower, which stabilizes feedback process
- The DC components of the amplified signals are removed by the baseline
 - BLPix is adjustable level
 - BLResPix acts as a high-pass filter

Backup : Pixel Cell - Comparator

• NMOS comparator

- two differential amplifier stages
- VNCompPix is a current source
- ThPix is threshold level
- VGatePix : self-aligned gates for certain type of high speed circuits in order to limit current flow and to act as a load
- Line driver
 - The voltage amplitude of line signal is defined by VDD and VMinusPix
 - The signal is sent to periphery

Backup : Time Resolution for Sensor at PSI

- Efficiency
 - 99.6 % with noise rate 1.9 Hz/pixel
- Time resolution for the sensor
 - defined error of time resolution
 - variance of 10 times measurement with different fit ranges

Correction	Time resolution [ns]		
uncorrected	8.0 ± 0.1		
Delay	$\textbf{7.5} \pm \textbf{0.1}$		
Full	5.1 ± 0.1		

VNPix	VNFBPix	VNCompPix	VGatePix	VNLoadPix	VNFollPix	HV	VMinusPix
0x12	0xa	0x2a	2.08 V	0xa	0x7	-60 V	700 mV