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‣ Great advances in the exploration of perturbative calculations (fixed/all orders) in QFTs in the 
last decade, instrumental to exploit LHC data (new physics searches, Higgs sector, SM, …) 

‣ However, more often than not the bridge between theory and  
experiments speaks the language of Monte Carlo (MC)  
parton showers … with considerable uncertainties  
 
e.g. Higgs prodn in VBF:  
(N)NNLO QCD and NLO EW available, 
though Th. error dominates analyses
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Inspecting the structure of collider events

Large difference in the simulation  
of kinematic distributions with 

 different MC tools

[ATLAS ’19]
[Jaeger, Karlberg, Plaetzer, Scheller, Zaro ’20]



‣ Outstanding experimental performance  
  at the LHC opens new avenues to test  
  the SM and perform indirect searches  
  (constraints) of New Physics models 

‣ In specific cases the sensitivity  
 is augmented by Machine  
 Learning technology:  
 e.g. substructure of jets,  
 tagging of heavy particles,  
 q/g discrimination, … 

‣ Dependence on the training  
 data (MC) may be substantial.  
 Control over fine details needed !  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~ × 5

e.g. N subjett. for W tag: linear vs. DNN
Inspecting the structure of collider events

[Komiske, Metodiev, Thaler ’17]



Hard scattering  
(~102 - 103 GeV) 
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Hadron 
formation  
(~ 1 GeV)

Observation 
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ProtonProton

Fixed order perturbation  
theory: a lot of recent progress  
[e.g. N(N)LO+PS matching &  

multi-jet merging] 

Parton Shower: multi-scale evolution 
& large hierarchy of scales:  

formal accuracy ??

Monte Carlo Parton Showers

Modelling of non-
perturbative dynamics
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‣ When a hierarchy of scales is present  
                                   
                         perturbative accuracy ≡ logarithmic accuracy (resummations) 

‣ Two different (though perturbatively equivalent) definitions commonly used: 

‣ e.g. cumulative distribution for an observable v < e-L

Perturbation theory in multi scale regimes

Perturbative order of EFT RGEs  
(anomalous dimensions &  

initial conditions)

Squared amplitudes in the relevant 
kinematic limits (ordering)

           LL (=0 sometimes) NLL



Diagrams from [Dreyer, Salam, Soyez ’18] 6

A geometric criterion: the Lund plane
‣ 3 (phase space) variables per real radiation, two of which lead to logarithms, e.g. {kT, η}; {E, θ} 

‣ LL: reproduce correct squared amplitude in limits  
where both logarithmic variables are strongly  
ordered across emissions

 η
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e.g. η > 0
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‣ 3 (phase space) variables per real radiation, two of which lead to logarithms, e.g. {kT, η}; {E, θ} 

‣ LL: reproduce correct squared amplitude in limits  
where both logarithmic variables are strongly  
ordered across emissions 

‣ NLL: reproduce correct squared amplitude in  
limit where at least one logarithmic variable  
is strongly ordered across emissions. E.g. 
‣ Similar kt and ordered in angle (or pseudo rapidity η) 
‣ Similar angle and ordered in kt (or energy) 

‣ When two emissions are close (in both variables), a mistake  
is allowed (NNLL)
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Strong ordering in one log variable ≡ large Lund plane distance

A geometric criterion: the Lund plane
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e.g. NLL: building blocks

e.g. e+e- -> q qbar + X at NLL
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collinear limit described by independent emissions  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Image by T. Becher et al.
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‣ rIRC safe, global observables described by emissions strongly ordered in angle, but with 
commensurate transverse momenta (recoil effects are relevant) 

‣ realised, e.g., in angular ordered parton showers 



[Banfi, Corcella, Dasgupta ’06]
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soft wide angle limit described by a collection of soft colour 
dipoles strongly ordered in energy (planar limit)

Image by T. Becher et al.
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e.g. NLL: building blocks

e.g. e+e- -> q qbar + X at NLL

‣ non-global logarithms described radiation at similar angles, but strongly ordered energy / 
transverse momentum 

‣ angular ordering fails, dipole showers needed



‣ Squared amplitudes built recursively via a Markovian chain of emissions (planar limit). Virtual 
corrections strictly implemented through unitarity

10

Dipole showers in a nutshell

Evolution from a state with n particles Sn  
to one with n+1 particles Sn+1

v0 ~ v v v v vv v7 ~ 

H
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Dipole showers in a nutshell

Evolution from a state with n particles Sn  
to one with n+1 particles Sn+1

Evolution variable,  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‣ Squared amplitudes built recursively via a Markovian chain of emissions (planar limit). Virtual 
corrections strictly implemented through unitarity

CMW scheme, 
consistent inclusion  

of O(αs2) soft current  
up to NLL 
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Dipole showers in a nutshell

Evolution from a state with n particles Sn  
to one with n+1 particles Sn+1

Evolution variable,  
e.g. kT in the dipole  

c.o.m. frame

Some notion of rapidity of the emission within the 
dipole, deciding how the dipole is partitioned. 

Recoil assigned according to a map Sn → Sn+1

LO Splitting functions

v0 ~ v v v v vv v7 ~ 

H
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A case study: kt ordering & local recoil 
(e.g. Pythia8, Direv1, CS dipole shower are of this type)
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A case study: kt ordering & local recoil
‣ As an example, let us consider the O(αs2) soft emission off a fermion line. In the (NLL) limit of 

strong angular ordering, similar transverse momenta, one expects the emission probability 
(squared amplitude x phase space) to be 

‣ Instead, dipole local showers assign the recoil to either of the emitting dipole ends, according to 
the rapidity of the emission in the dipole centre-of-mass frame
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Y
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-e.g.  

-  Start with an emission g1 

-  Add a branching q g1 -> q g1 g2 (right dipole)  

-Recoil & color taken from g1 even if the second 
emission is collinear to the quark: breakdown of the 
independent emission picture

i.e. recoil taken from the quark
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A case study: kt ordering & local recoil



Line of zero rapidity in the dipole’s rest 
frame, boosted into the event frame
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[Dasgupta, Dreyer, Hamilton, PM, Salam, Soyez ’18; 
see also Bewick, Ferrario Ravasio, Richardson, Seymour ’19]
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‣ Problems start at LL: even with strong kT ordering (i.e. no kinematic recoil), the colour factors 
are assigned incorrectly, leading to a 1/Nc2 - suppressed mistake for specific observables  
 
      e.g. Double logarithmic difference from correct result for the Thrust 

‣ At NLL the kinematic recoil plays a role, and all global observables formally have a problem 
originating from the above mechanism: αsnLn terms wrong (see later)
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‣ Beyond αs2  the independent emission picture is further violated by emissions from soft {gg} 
dipoles, for which the recoil is necessarily taken from one of the two soft ends rather than 
from the hard fermion line 
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A case study: kt ordering & local recoil
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‣ Beyond αs2  the independent emission picture is further violated by emissions from soft {gg} 
dipoles, for which the recoil is necessarily taken from one of the two soft ends rather than 
from the hard fermion line 

‣ Additional problems are discovered for classes of observables for which the recoil 
mechanism leads to a violation of coherence and the appearance of super leading 
logarithms (SLL) starting at O(αs3) or O(αs4), not predicted by QCD (cf. paper appendix).
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A case study: kt ordering & local recoil
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Design of NLL parton showers



[Collins ’88; Knowles ’90; Super ’08; Richardson & Webster ’18]
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Some remarks
‣ Solving these problem demands a fundamental redesign of the dipole shower 

‣ Ultimately, we want to achieve a parton shower that is NLL accurate simultaneously for rIRC 
safe global, and for non-global observables across many collider processes. Crucial to build a 
framework to demonstrate the formal accuracy in a solid manner 

‣ Let’s start from a clear theoretical environment: e+e- collisions, large Nc limit. Also, neglect for 
now azimuthal (spin) correlations, which are known at this order 

‣ NB: QCD resummation provides us with guidelines, therefore more than one solution is 
possible. Difference between various NLL accurate solutions gives us a way to estimate the size 
of genuine subleading (NNLL) logarithmic corrections



‣ Keep the recoil dipole-local, i.e. for each new emission  

‣ Novel element #1: partitioning of the dipole (at             ) occurs at equal angles  
between the emission and the dipole ends in the event c.o.m. frame

21

dipole

⌘̄ = 0

The PanLocal shower (local recoil)
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‣ Keep the recoil dipole-local, i.e. for each new emission  

‣ Novel element #1: partitioning of the dipole (at             ) occurs at equal angles  
between the emission and the dipole ends in the event c.o.m. frame

22

dipole

⌘̄ = 0

e.g.  
Consider the configuration

In the limit of strong angular 
ordering and commensurate kT’s, 
g2 takes the recoil from the hard 
quark

☑

The PanLocal shower (local recoil)



‣ Keep the recoil dipole-local, i.e. for each new emission  

‣ Novel element #1: partitioning of the dipole (at             ) occurs at equal angles  
between the emission and the dipole ends in the event c.o.m. frame
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dipole

⌘̄ = 0

Instead, if g2 is produced at larger rapidities 
than g1, and they are both collinear to the 
quark, the recoil is still taken from g1 in a 
logarithmic (NLL) region of phase space

☐𐄂

The PanLocal shower (local recoil)



‣ Keep the recoil dipole-local, i.e. for each new emission  

‣ Novel element #2: use an evolution variable v defined as (β < 1) 

‣ Choosing β > 0 effectively reproduces angular ordering in the limit of commensurate kt’s and 
strong angular separation (NB: kt ordering not allowed in local recoil scheme)

24

dipole

kt = ⇢ve�|⌘̄| ⇠ ve�|⌘
w.r.t. emitter|

The PanLocal shower (local recoil)



‣ Keep the recoil dipole-local, i.e. for each new emission  

‣ Novel element #2: use an evolution variable v defined as (β < 1)

25

dipole

- Ordering in  v  now implies that kt2 << kt1  
[i.e. no recoil] 

- The combination of partition⊕ordering  
creates a mechanism in which the  
recoil is always taken from the  
hard extremities of the dipole chain  
[correct at NLL]

The PanLocal shower (local recoil)

☑



‣ Longitudinal recoil is kept dipole local 

‣ Transverse recoil is distributed globally across the event via a Lorentz boost + rescaling  
i.e. recoil is taken from (and shared among) the hard extremities of the dipole string 

‣ With this scheme, also kt ordering is now a viable option
26

dipole

The PanGlobal shower (local recoil)
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‣ Definition of observables (sometimes new) sensitive to different aspects of QCD radiation 

‣ Formulation of a toy model of each shower algorithm  
(soft limit, fixed coupling, simplified kinematics, primary radiation only): 

‣ All-order numerical tests against NLL calculation in the same toy model 

‣ Fixed order calculations up to O(αs4), numerical and analytic. 

‣ reveal issues that give small effects when resummed  
(e.g. spurious super-leading logarithms) 

‣ Accuracy tests in the full shower, algorithmic optimisation necessary 

Testing the logarithmic accuracy of a parton shower

➥ Discussed in the following



‣ Tests of logarithmic accuracy in the full shower against NLL resummations: 
‣ Consider cumulative distributions for an observable (e.g. jet rate, event shapes, …)  

in the limit αs |L| ~ 1, and |L| ≫ 1  

‣ Compute the ratio 

‣ PS is LL: ΣPS misses O(1) corrections, i.e. 

‣ PS is NLL: ΣPS misses O(αS) corrections, i.e.

28

           LL 
(=0 sometimes)

NLL

⌃PS

⌃NLL

lim
↵s!0

⌃PS

⌃NLL
= 1

lim
↵s!0

⌃PS

⌃NLL
6= 1

Testing the logarithmic accuracy of a parton shower
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‣ Definition of Lund Jet Plane (LJP) based azimuthal 
angle between two leading primary declusterings 
[actual definition involves a dynamical frame]

An example: azimuthal substructure of jets

[Dasgupta, Dreyer, Hamilton, PM, Salam, Soyez ’20] 
cf. [Dreyer, Salam, Soyez ’18] for construction of the Lund Jet Plane



e.g. let’s consider the ΔΨ distribution given earlier. 
Ratio to NLL shows a residual & non-trivial shape 
difference in the limit αs → 0. 
 
➥ The observed discrepancy is due to the unphysical 
features in the (transverse) recoil assignment which 
fails to reproduce the correct NLL matrix elements. 
This translates into a breaking of NLL accuracy

αs

30

60% ~ O(1)  
difference

An example: azimuthal substructure of jets



[Dasgupta, Dreyer, Hamilton, PM, Salam, Soyez ’20] 
cf. [Dreyer, Salam, Soyez ’18] for construction of the Lund Jet Plane

NLL (q jets) 
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‣ΔΨ distribution is uniform at NLL, while modern 
dipole showers (e.g. Pythia8 / Dire)  
predict a non-trivial shape

An example: azimuthal substructure of jets



[Dasgupta, Dreyer, Hamilton, PM, Salam, Soyez ’20] 
cf. [Dreyer, Salam, Soyez ’18] for construction of the Lund Jet Plane

NLL (q/g jets) 
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‣ΔΨ distribution is uniform at NLL, while modern 
dipole showers (e.g. Pythia8 / Dire)  
predict a non-trivial shape 

‣ Unphysical dependence on jet flavour, with 
implications for q/g jet discrimination if Machine 
Learning tools learn these features.

An example: azimuthal substructure of jets



[Dasgupta, Dreyer, Hamilton, PM, Salam ’18] 
[Dasgupta, Dreyer, Hamilton, PM, Salam, Soyez ’20] 
See also [Forhsaw, Holguin, Plaetzer ’20]

‣ Use input from NLL resummations to construct a  
parton shower alg. that constructs the correct multiparton  
squared amplitudes in the relevant kinematic limits  

➥ New classes of NLL shower algorithms (PanLocal = 
local recoil map; PanGlobal = global recoil map)  
reproduce correct NLL results as expected  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An example: azimuthal substructure of jets
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{
Plots: relative deviation from exact NLL 

[in αs→0 limit at fixed αs L]

[Dasgupta, Dreyer, Hamilton, PM, Salam, Soyez ’20]Accuracy across many observables
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Global observables: 
sensitive to strong η (θ)  
separation at NLL  

T = max
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P
i |pi · n̂|P
i |pi| [Thrust]

[Moment of Energy-Energy correlation]

e.g.
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{
[Sjostrand et al. ‘15] 
[Hoeche, Prestel ’15]

Orange triangles indicate spurious 
terms (either NLL or SLL) at fixed order, 
that become small when resummed

Plots: relative deviation from exact NLL 
[in αs→0 limit at fixed αs L]

[Dasgupta, Dreyer, Hamilton, PM, Salam, Soyez ’20]Accuracy across many observables

Global observables: 
sensitive to strong η (θ)  
separation at NLL  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{
Plots: relative deviation from exact NLL 

[in αs→0 limit at fixed αs L]

[Dasgupta, Dreyer, Hamilton, PM, Salam, Soyez ’20]Accuracy across many observables

Global observables: 
sensitive to strong η (θ)  
separation at NLL  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Non-global observables: 
sensitive to strong kt (E) 
separation at NLL  
e.g.
ET =

X

i2⌦

Et,i

[Dasgupta, Dreyer, Hamilton, PM, Salam, Soyez ’20]Accuracy across many observables
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Subjet particle multiplicity in  
the kT algorithm: 

sensitive to full recursive  
shower structure

Accuracy across many observables [Dasgupta, Dreyer, Hamilton, PM, Salam, Soyez ’20]
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Subjet particle multiplicity in  
the kT algorithm: 

sensitive to full recursive  
shower structure

New classes of shower: 
NLL for all observables considered 

[global & non-global at once]

Accuracy across many observables [Dasgupta, Dreyer, Hamilton, PM, Salam, Soyez ’20]



[Hamilton, Medves, Salam, Scyboz, Soyez ’20] 
see also related work by 
[Plaetzer, Sjodahl ‘12 + Thoren ’18; Nagy, Soper ’12-’19; 
Hoeche, Reichelt ’20; De Angelis, Forhsaw, Plaetzer ’20; 
Forshaw, Holguin, Plaetzer ’20]

37

Beyond the planar limit: subleading Nc 
‣ Same guiding principles can be used to include some  

information about subleading colour corrections 
‣ Full colour accuracy can be achieved for global observables  

in processes with up to three coloured legs

NLL accuracy test - NODS procedure



see also related work by 
[Hoeche, Prestel, + Krauss ’17; Dulat, Hoeche, Prestel ’18] 38

Conclusions and Outlook
‣ Formulation of accuracy criteria for parton showers guided by principles of QCD resummations 

‣ Testing framework for algorithms based on comparison to all order calculations 

‣ With seemingly simple methods, one can engineer new PS algorithms that are NLL accurate for 
global & non-global observables at once 

‣ Demonstration of NLL accuracy both at fixed order and all orders 

‣ Some aspects remain to be addressed (initial state radiation, spin correlations) but the proposed 
algorithms and techniques can incorporate solutions to the above problems 

‣ This approach offers a powerful avenue to look beyond NLL, and take the first steps towards a 
new generation of accurate parton shower algorithms 


