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Summary: This paper argues that random testing is central to controlling the COVID-19 epi-
demics and to optimizing the response to it. Random testing is crucial to acquire currently lack-
ing quantitative information on how various restrictive measures affect transmission rates. This
knowledge will (i) significantly improve the predictability of the epidemics, (ii) allow for informed,
optimized decisions on how to modify the set of restrictive measures, and (iii) enable the real-
time assessment of the efficiency of new means to reduce transmission rates (such as new tracing
strategies).

It is very important to start random testing for COVID-19 infections immediately and to rapidly
increase the testing capacity — the more frequently one samples the population the more reliable
and geographically refined will be the data. Here we show that for a country with the population
of Switzerland, even a few thousand random tests per day suffice to obtain valuable data about the
current number of infections and their evolution in time. This is crucial to assess in real time the
quantitative effect of restrictive measures. It further allows one to detect geographical differences
in spreading rates and thus formulate optimized strategies for a safe reboot of the economy.

In addition to the phenomenology and rough estimates that we outline, we describe simulation
strategies for decision support concerning testing, local quarantine regimes, and the safety of a
reboot.

The COVID19 pandemic is producing a worldwide
shutdown of life as we knew it. This shutdown is a polit-
ical response informed on epidemiologic studies assessing
the cost in human lifes depending on different possible
strategies (do nothing, mitigation, suppression). [1–3]
Mitigations can be achieved by different strategies such
as social distancing or testing. The quantitative impact
of very frequent testing has been studied in a recent un-
published work by Jenny et al. in Ref. [4].

Frequent testing far above the currently possible level
should soon become available in Switzerland, a substan-
tial increase being forecast on the scale of 1-2 months.
What testing frequency can be achieved is not clear yet.
To fully control the COVID19 epidemic by widespread
testing, we will estimate that the ability to test millions
of people per day is required (cf. Sec. I). However, we
show that tracking and control of this epidemic is possi-
ble by testing a much smaller number of people per day.
In fact, we will argue that even with the current test-
ing rate, extremely valuable information on the rates of
transmission depending on geographic regions of Switzer-
land can be obtained.

The paper is organized as follows: In Sec. I we discuss
the use of massive testing as a direct means to contain the
epidemics, showing that it requires a 100-fold increase of
the current testing frequency. In Sec. II we define the
main challenge: To measure the quantitative effect of
restrictive measures on the transmission rate. Section
III is the main part. It shows how data from sparse
sampling tests can be used to infer current growth rates
and their regional dependence. Section IV comments on
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the use of contact tracing and argues that it cannot be a
substitute for random testing. Section V defines a model
whose simulation illustrates the theoretical analysis of
Sec. III, and allows to assess the risks and benefits of
various control strategies for a reboot of the economy.

I. MASSIVE TESTING

Once the massive frequency of 1.5 million tests per
day becomes available, it will be possible to test every
person in Switzerland every 5 − 6 days. If the infected
people that have been detected are kept in strict quar-
antine (such that they will not infect anybody anymore
with high probability), such massive testing could be suf-
ficient to prevent an exponential growth in the number of
cumulated infections without the need of draconian so-
cial distancing measures. We now explain qualitatively
our approach to reach this conclusion.

The required testing rate can be estimated as follows.
Let ∆T denote the average time until an infected person
infects somebody else. The transmission number R, i.e.,
the number of infections per sick person, falls below 1
(and thus below the threshold for exponential growth) if
non-diagnosed people are tested at time intervals of no
more than 2∆T . Thus, the required number of tests over
the time 2∆T , the full testing rate τ−1

full, is

τ−1
full =

NCH

2∆T
, (1a)

where

NCH = 8′500′000 (1b)
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is the number of inhabitants of Switzerland.1 Without
social restrictions, it is estimated that

∆T ≈ 3 days, (2a)

such that

τ−1
full = 1.4× 106/days, (2b)

i.e., about 1.4 million tests per day would be re-
quired to control the epidemics by testing only. If
additional restrictions such as social distancing etc., are
imposed, ∆T may increase by a modest factor and one
can get by with indirectly proportionally fewer tests per
day. Nevertheless, on the order of 1 million is a minimal
requirement for massive testing to contain the epidemics
without further measures.

Cost: At the price of 300 CHF per test, massive test-
ing costs about 300’000’000 CHF a week, which is still
much less than the economic cost of even a partial lock-
down.

However, even while the Swiss capabilities are still far
from reaching 1 million tests per day, testing offers two
important benefits in addition to identifying people that
need to be quarantined. First, testing allows to moni-
tor and study the efficiency of measures that keep the
number R of transmissions per infected person below 1.
This ensures that the growth rate k of case numbers and
new infections is negative, k < 0. Second, testing helps
suppress the transmission number R and thus allows one
to be less restrictive in terms of other measures, such as
social distancing.

To quantify the latter benefit, observe that the effect
of massive testing on the growth rate k is proportional
to the testing rate. Let us assume that without testing
or social measures one has a growth rate k0. Then, if
the testing rate τ−1

full is sufficient to kill the exponential
growth in the absence of other measures, a smaller testing
rate τ−1 decreases the growth rate by k0 τ

−1/τ−1
full. The

remaining reduction of k to zero must then be achieved by
a combination of restrictive social measures and contact
tracing.

It is possible to refine the argument above to take ac-
count of the possibility of a spectrum of tests with partic-
ular cost/performance tradeoffs, i.e., a cheaper test with
more false positives and negatives could be used for ran-
dom testing, whereas those displaying symptoms would
be subjected to a “gold standard” (PCR) assay of viral
genetic material.

1 Note that if tests take the nonvanishing time ttest to yield a diag-
nosis, this time needs to be subtracted from the denominator in
Eq. (1a), thereby resulting in an enhancement of the full testing
rate τ−1

full.

II. THE CHALLENGE: QUANTIFYING THE
EFFECTIVENESS OF RESTRICTIONS

The main unresolved challenge is the quantifica-
tion of the effect of social restrictions in reducing
the transmission rate. By how much do individual
measures reduce the growth rate k? How should they be
combined optimally to achieve k = 0?

In Section III we show how these effects can be
measured. We have the unique opportunity to inves-
tigate this in the coming weeks. The earlier one starts
with random testing the better.

III. SMART TESTING

We now argue that statistically randomized testing can
be used in a smart way, so as to keep the dynamics of
the epidemics under control. Moreover, this is possible
without the huge time delays of up to 14 days that we
currently have.

The idea of smart testing is the following. One
regularly tests randomized people so as to mon-
itor the fraction of infected people. By follow-
ing these numbers, one can determine nearly in-
stantaneously the growth rate of infections, and
thus assess and quantify the effectiveness of socio-
economic restrictions. This monitoring can be
done in a regionally resolved way, such that mea-
sures can be adapted to different regions (ur-
ban/rural etc.) in Switzerland.

Note that randomized testing is essential to obtain in-
formation on the current number of infections and its evo-
lution with time. It serves an additional and entirely dif-
ferent purpose from testing people with symptoms, med-
ical staff, or people close to somebody infected, which
constitute highly biased samples.

The first goal of random testing is to have a firm
test/confirmation of whether the current restrictive mea-
sures are sufficient to mitigate or suppress the exponen-
tial growth of the COVID-19 epidemic. In case they
should still be insufficient, we can measure the current
rate and monitor the effect of additional restrictive mea-
sures.

Suppression of the COVID19 epidemic is achieved if
the number of infections decays exponentially with time
for a sufficiently long time. Stability of the COVID19
epidemic is achieved when the number of infections is
constant in time for a sufficiently long time. Once sta-
bility is reached, one may start relaxing the restrictions
step by step and monitor the effect on the growth rate k
as a function of region.

It might prove useful not to lift restrictions homo-
geneously throughout the country, but instead to vary
the set of restrictions that are released. For example, if
Easter holidays end on different dates in different can-
tons, one may want to see the relative effect on k of
re-opening schools. However, to go beyond such natu-
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rally occurring differences might prove politically diffi-
cult, even if it is just for 1-2 weeks. How to decide which
region release which measures first? A further issue is
that the effects might be unclear at the borders between
regions with different restrictions. There may also be
complications with commuters that cross regional bor-
ders. Finally, there may be undesired behavioral effects,
if regionally varying measures are declared as an “exper-
iment”. All these issues need careful consideration.

A. The value of partitioning the country for
statistical analysis

We argue that valuable information can be gained by
analyzing the test data not for Switzerland as a whole,
but by distinguishing different regions. Accordingly the
test centers should also be distributed across the whole
country with approximately equal density per inhabitant.

Let us group the population of Switzerland into G
sets. The most natural clustering is according to the
place where people live: cities or counties.2 The more
we partition the country, the more refined the acquired
data can be, and the better tailored the measures will be.
However, for a fixed national testing rate, increased par-
titioning means that the statistical uncertainty for each
region will grow. In this section we estimate the opti-
mal choice of the number G of groups for the analysis.
The choice G = 1 means that the whole of Switzerland is
treated as one. This is highly sub-optimal, since valuable
statistical insight is lost.

Let us take all population groups m ∈ {1, · · · , G} to
have roughly the same size, each one containing

Nm ≈
NCH

G
(3)

people. Let Um be the number of undetected, but in-
fected people in group m. We assume that detected peo-
ple do not spread the disease. The spreading of infections
is also assumed to follow a simple linear growth equation

dUm

dt
=

G∑
n=1

Kmn Un, m = 1, · · · , G. (4)

Here, the G×G matrix K has the matrix elements Kmn.
K has the eigenvalues km. The largest growth rate is
given by

κ ≡ max
m
{Re (km)} . (5)

2 One might also consider other distinguishing characteristics of
groups (age/commuting habits, etc.), but we will not do so here,
since it is not clear whether the increased complexity of the model
can be exploited to reach an improved data analysis. In fact we
expect that the number of fitting parameters will very quickly
become too large by making such further distinctions.

The number of infections grows exponentially if κ > 0,
and decreases if κ < 0.

The matrix K will itself evolve with time, as the
number of immune people grows, as restrictive measures
change, mobility is affected, new tracking systems are im-
plemented, hospitals get overloaded, testing is increased
etc. Nevertheless, over a short period of time where such
conditions remain constant, and the fraction of immune
people does not change significantly, we can assume the
effective growth kernel K to be constant in time. We will
exploit this below.

In the simplest case, one assumes no contact between
geographically distinct groups, that is, the off-diagonal
matrix elements are zero (Km6=n = 0) and the eigenval-
ues become the elements of the diagonal: km ≡ Kmm. In
general, the transmission rate depends on the region, and
thus km 6= kn. It is natural to expect that km correlates
with the population density, the fraction of the popula-
tion that commutes, the age distribution etc. Prelimi-
nary fits to the cantonal data of the past month
(with the gross assumption that K remained con-
stant over this full period) show that the fitted
growth rates are scattered rather strongly. Most
eigenvalues km lie between 0.1 and 0.3, with a
rather substantial spread.

It is likely that this significant variation of km persists
in a more careful analysis and after removing the condi-
tion Km 6=n = 0. This suggests restrictive measures
should be adapted to the regions, so as to min-
imize their socio-economic impact in the regions
with low km.

B. Determining the optimal partition in groups

As we mentioned, it might be desirable to have a con-
siderable geographic refinement, and potentially to have
different regions lifting their restrictions in different man-
ners, so that we learn faster about the effect of specific
measures. On the other hand, the sampling number in
each group decreases with increasing the number G so
that statistical uncertainties grow. Here, we determine
the maximal number of groups that can be analyzed when
a certain precision for the exponential transmission rates
km is to be achieved.

We assume that each day a constant number of people
are tested in each region. If Nt is the number of tests per
day in Switzerland, and we assume sampling over a time
dt, the number of tested people in each region is

Nsamp ≡
dtNt

G
. (6)

Let im be the fraction of infected people in region m. The
instantaneous value of im at time t is estimated from the
sample. On average one will detect

Im(t) = im(t)Nsamp (7)
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infected people over the sampling time window dt. This
comes with random fluctuations whose scale is deter-
mined by the standard deviation

√
Im(t). In the subse-

quent test window dt in time, a similar number Im(t+dt)
will be measured. The instantaneous growth rate is then
defined to be

km(t) =
1

dt

Im(t+ dt)− Im(t)

Im(t)
, (8)

with the standard deviation (statistical uncertainty)

∆km(t) =
1

dt

√
1

Im(t)
+

1

Im(t+ dt)

≈ 1

dt

√
2

Im(t)

=
1

dt

√
2

Nsamp

√
1

im(t)
. (9)

The uncertainty is smaller when Nsamp is larger, i.e., the
larger the population groups are. The uncertainty also
decreases with the inverse of the square root of the frac-
tion of infected people, im — if the fraction is too low the
statistical fluctuations become too large and little statis-
tically meaningful information can be obtained. Indeed,
for reliable statistical analysis, it is not desirable to re-
duce the number of infected people to zero, but rather
to maintain a level that is well manageable by the health
system. In fact, this latter scenario might be more easily
achievable.

Let us obtain an upper bound for a manageable im. We
assume that a fraction pCH

ICU of infected people in Switzer-
land needs to be in intensive care. More precisly, pCH

ICU is
the expected time spent in intensive care units (ICU)’s
divided by the expected time to be sick in Switzerland.
Here, we will use the value pCH

ICU = 0.05. Let ρICU,m
be the ICU beds per inhabitant that shall be allocated
to COVID19 patients in region m. The Swiss national
average is about

ρCH
ICU ≈

1200

8′500′000
≈ 1.4 · 10−4. (10)

For the epidemics not to overwhelm the health system,
one thus needs to maintain the infected fraction safely (a
factor 2 or so) below

im(t) ≤ min

{
ρICU,m

pCH
ICU

, · · ·
}
≈ min {iICU, · · · } , (11)

where

iICU ≡
ρCH

ICU

pCH
ICU

≈ 0.0028, (12)

and the dots stand for further similar constraints.
One should definitely mitigate the epidemics to values

of the order of iICU. Before that level is reached one can

certainly not start relaxing restrictions. It may prove dif-
ficult to push the fraction of infected people significantly
below iICU, since the recent experience in most European
countries shows that it is very hard to ensure that growth
rates k fall well below 0. The main aim would then be to
reach at least stabilization of the number of infected peo-
ple (k = 0). We thus assume that the im’s will stagnate
at values of the order of iICU.

Let us proceed, assuming a stable (time-independent)
fraction of infected people

im = i∗ ≡ iICU

2
, (13)

where we use the somewhat arbitrary safety buffer of a
factor of 2. The accuracy in determining the rates km
now follows from Eqs. (6), (9), (12), and (13) as

∆km =

√
2

i∗ (dt)3Nt

√
G. (14)

The uncertainty increases with the square root of distinct
regions, but is inversely proportional to the observation
time span (dt)3/2. The optimum number G of distinct
regions that remains compatible with an accuracy ∆km
of the rates km is

G =
i∗ (dt)3Nt

2
(∆km)2. (15)

To assess and adapt the measures on a weekly basis,
we choose dt = 6−7 days. (Of course, if releasing certain
measures leads to a sudden increase close to the explosive
unmitigated growth rate, this will be detected within 2-
3 days, and countermeasures can be taken immediately,
preventing an explosion.) With Nt = 100′000 tests per
day and a targeted accuracy of ∆k = 1/(20 days),
one can define as many as G = 60 different regions!
Note that the growth rate we have had for quite some
time has entailed a doubling of cases every 3 days, i.e., a
growth rate of

k0 = ln(2)/(3 days) = 0.23 day−1. (16)

The standard devitation ∆k = 0.05 day−1 might be too
large a statistical uncertainty to meaningfully assess the
actual value of k, which should stay safely away from
k0. A smaller value of ∆k = 0.025 day−1 might be more
appropriate, corresponding to a growth rate for which
doubling occurs every 4 weeks and which leaves ample
time to react. This issue will be addressed and resolved
by the simulations for various response strategies.

Even with a modest value of Nt = 8′000 (in ad-
dition to the current 8’000 tests reserved for suspected
infections and medial staff) one can analyze 4-5 dif-
ferent regions with the same accuracy goal.

We emphasize that such a study will generate valu-
able socio-epidemiological information for Switzerland
and also serve as an important reference for other coun-
tries with similar organization.
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C. Risk assessment

It is essential to assess and control the risks of re-
leasing restrictions that have brought under control the
COVID19 epidemic. In particular, it is crucial to sup-
press a potential second exponential wave when the econ-
omy is rebooted.

Having random testing in place, the risk of a second
wave can be kept to a minimum. Additional 8’000 daily
tests (on top of the current tests for medical purposes)
will allow to detect growth rates as small as 0.025 day−1

(for G = 1, that is treating Switzerland as a whole).
This corresponds to a slow growth, doubling of infected
people in 4 weeks. In the worst case scenario, where re-
leasing certain measures immediately let us jump back to
the unmitigated growth rate of 0.23 day−1, this would be
detected within 1-2 days from the change coming into ef-
fect. One can then take immediate action, at the price of
increasing the number of infected people by a certain per-
centage. A doubling would likely be the worst case sce-
nario, if one immediately reinstates the conditions that
had ensured stabilization. Insofar it is rather safe to try
the release of certain restrictions. Trying them out first in
some regions, or releasing different restrictions in differ-
ent regions, to learn faster about their respective effects,
might also be an option to consider.

These considerations will be underpinned by quantita-
tive modeling, as sketched in Sec. IV.

IV. ASSESSMENT OF CONTACT TRACING AS
A MEANS TO CONTROL THE EPIDEMICS

Here we briefly comment on the strategy of contact
tracing as a means to contain the epidemics, as has been
discussed in the literature [6]. We argue that it is a help-
ful tool to suppress transmission rates, but is susceptible
to fail when no other method of control is used.

Contact tracing means that once an infected person is
detected, people in their environment (i.e., known per-
sonal contacts, and those identified using mobile-phone
based Apps etc) are notified and tested, and quarantined
if detected positive. As a complementary measure to
push down the transmission rate, it is definitely useful
and a low cost measure, since the probability to detect
infected people is high. However, as a sole measure
to contain an epidemics contact tracing is imprac-
tical and even hazardous.

The reason is as follows. It is known that a consid-
erable fraction fasym of infected people show only weak
or no symptoms, so that they would not get tested un-
der the present testing regime. The value of fasym is not
well known, but it might be high (30% or much higher).
Such asymptomatic people will go undetected, if they
have not been in contact with a person displaying symp-
toms. If on average they infect R people while being
sick, and if Rfasym > 1, there will be an exponential
avalanche of undetected cases. They will produce an ex-

ponentially growing number of detectable and medically
serious cases. The contact tracing (backward) of those
cannot stop this avalanche, and only pushes the threshold
value for R slightly above 1/fasym. since it can only de-
crease R to a value slightly above the threshold value
1/fasym.

Contact tracing as a main strategy thus only becomes
viable once one is reasonably confident about the value
of fasym and the ability to control the value of R such
that Rfasym < 1.

V. MODELING POLICY RESPONSE - RISK
ASSESSMENT

Let us consider the following model. The evolution in
time of the undetected infected population Um in region
m of Switzerland is governed by the forced linear equa-
tion (

dUm

dt

)
(t) =

G∑
n=1

Kmn(t)Un(t) + Φm(t), (17a)

where m = 1, · · · , G and Φm(t) accounts for those in-
fections arising from people crossing the national border.
We will mostly set it to zero for the present study.

We assume that the G × G matrix K(t) is piecewise
constant in time and of the form

K(t) = diag
(
km(t)

)
+ f(t)C. (17b)

Thus, it is parametrized by the G diagonal elements
diag

(
km(t)

)
and a single off-diagonal parameter f(t) that

multiplies the connectivity matrix C that we define by

Cmn = Cnm = 1 (17c)

when regions m and n are considered connected, and

Cmn = Cnm = 0 (17d)

otherwise. We will mainly consider two models. There
is the mean-field model, where all regions are connected
to each other. There is the nearest-neighbor model for
which only regions sgaring borders interact. With these
assumptions K(t) is a G × G symmetric matrix. Thus,
K(t) has G real-valued instantaneous eigenvalues

λ1(t) ≥ λ2(t) ≥ · · · ≥ λG(t), (17e)

each of which depends on G+ 1 time-dependent param-
eters.

For t < 0, we assume stability, with K(t < 0) ≡ K(0)

having only negative eigenvalues. This is the state to
be reached before a reboot of the economy is considered.
For simplicity we take the matrix to be given by

k(0)
m = −k0, (18)

and some f (0) small enough to ensure stability. For con-
creteness, we take k0 = 0.05 and f (0) = 0.002.
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Our model neglects the contributions to the time evo-
lution of K(t) due to the evolving age distribution of
infected people, or increasing immunity. We also neglect
its temporal fluctuations (e.g., due to workday/weekend
alternation). We assume that K(t) changes only in re-
sponse to policy measures which are taken at specific
times when certain criteria are met, as defined by a policy
strategy. An intervention is taken when the sampled test-
ing data indicates that with high likelihood the largest
eigenvalue of K(t), λ1(t), is above some upper threshold
κ+ > 0. Likewise, another intervention is taken once all
im are below i∗, i.e., λ1(t) is below some negative thresh-
old κ− < 0 . Note that if one has substantial infection
influx Φm across the national borders, one may want to
choose the threshold κ to be negative, to avoid a too large
response to the influx.

To reach these decisions, data is acquired. Every day
Ns people (out of all Nm in a group) are tested. The
fraction im of infections detected by the test is a Gaussian
random variable with mean

〈im(t)〉 = Um(t)/Nm (19a)

and standard deviation

〈[im(t)]2〉1/2
c =

√
Um(t)/Nm. (19b)

The current entries of K(t) are then estimated from fit-
ting data since the last policy change at time ti. It will
take at least 2-3 days to make a fit that is reasonably
trustworthy. From the fitted K(t) one obtains λ1(t) with
its confidence interval δλ1(t). If the instability threshold
is surpassed, i.e., if

λ1(t)− κ+ > αδλ1(t) (20a)

a new restrictive intervention is taken. If instead

κ− − λ1(t) > αδλ1(t) and im < i∗ for all m, (20b)

a new relaxing intervention is taken. Here, the parameter
α determines the confidence level

p ≡ [1 + erf(α)]/2 (20c)

that a stability threshold has indeed been crossed. This
results in a series of intervention times

0 ≡ t1 < t2 < t3 · · · . (20d)

In the time window [ti, ti+1], the matrix K(t) is con-

stant and takes the value K(i) = K(i−1) − ∆K(i) for
i ≥ 1. (A restrictive policy measure will decrease the
entries of K by ∆Kmn, undoing a measure will increase
Kmn by the same amount.) The quantitative effect of an
intervention is a priori not known to policymakers. For

∆K(i) ≡ −
[
K(i) −K(i−1)

]
, (21a)

we thus assume the diagonal elements to be of the form

∆K(i)
mm = δk(i) (1 + qm) , (21b)

where both δk(i) and qm are independent random vari-
ables that we choose as follows.

After a new policy measure has been taken at time
ti−1, the random testing generates further data. Only
the data for t > ti−1 should be used to estimate the

new growth matrix K(i−1). Let us denote by λfit
1 (t) the

largest eigenvalue of the matrix K(t), which is extracted
from the best fit to the sampled data on the window
[ti−1, t].

If at time t, λfit
1 (t) crosses the upper threshold κ+ with

confidence level p, we set ti = t and a restrictive measure
is taken. The associated decrement δk(i) is uniformly
distributed on the interval[

0, 2 δk
(i)
opt

]
(21c)

with

δk
(i)
opt,+ ≡ λfit

1 (ti)− κ+. (21d)

This describes that, while the policymakers aim to re-
set the growth factor λ1 to κ+, the result of the taken
measure may range from having no effect at all to over-
shooting by a factor of 2.

If instead λfit
1 (t) crosses the lower threshold κ− with

confidence level p at time t, we set ti = t. Now, δk(i)

is chosen to be negative. Again, we take it uniformly
distributed on the interval[

−2δk
(i)
opt,−, 0

]
, (21e)

where

δk
(i)
opt,− ≡ κ− − λfit

1 (ti) . (21f)

The random variable qm is uniformly distributed in

[−Q,Q], (21g)

where Q < 1 is a measure of the regional variability of
the response to a certain restrictive measure. The value
of f is also changed. For an additional restriction it is
decreased to a random quantity in [0, f ]. For a release of
restrictions, f is randomly picked between the current f
and some fmax.

The described process is stochastic for two reasons.
First, the sampling comes with uncertainties. Second,
the effect of policy measures is not known beforehand
(even though it may be learnt in the course of time, which
we do not include here). It is clear that the faster the
testing the more rapidly one can respond to a super-
critical situation.

A significant simplification of the model occurs when
the two thresholds are chosen to vanish, κ± = 0. In
this case the system tends to a critical steady state with
λ1(t→∞)→ 0.
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1. Assessing performance of strategies

To quantify performance one has to introduce some
measures. For example, the time integral

T∫
0

dt

{
κ− −

1

G
Tr [K(t)]

}
(22)

is a measure of restrictions in excess of what is absolutely
necessary. The number of interventions per unit of time
is a further important measure of performance.

A. Treating the country as one region - G = 1

It is useful to study the model for a single region,
G = 1, in which case Q = f = 0. This illustrates how
temporal fluctuations of the fraction of infected people
depend on the testing rate and the imposed upper κ+

and lower κ− thresholds.
Here, we theoretically analyze the important case

where the thresholds are

κ± = 0. (23)

The only parameters defining the problem are

(i) the initial growth rate k1 (after the first rebooting
step at t = 0),

(ii) the testing rate r (number of tested people per unit
time),

(iii) the initial fraction of infected people, i0, which is
of the order of iICU, and

(iv) the parameter α governing the confidence level to
take an intervention.

The number of infected people D(t) that are de-
tected in tests after the i’th policy intervention satisfies
a stochastic differential equation

1

r

(
dD

dt

)
(t) = i(ti) [1 + ki (t− ti) + · · · ] + f(t). (24a)

Here, i(t) is the fraction of infected people, whose expo-
nential growth was linearized in the square brackets (as
will be justified a posteriori). The second term, f(t), be-
comes a white noise correlated in time in the limit of a
sufficiently large number of tests, with the time average
(denoted by an oveline)

f(t) f(t′) =
1

r
δ(t− t′) i(t) ≈ 1

r
δ(t− t′) i(ti), (24b)

were we neglect the time dependence of the noise level.
We will see that the number of infections changes only
moderately over the whole time axis, and therefore we
simply replace i(ti) by its initial value

i0 ≡ i(0). (24c)

The natural time scale governing the non-linear growth
of D(t) is obtained from balancing the second and the
third term in Eq. (24a),

ttyp = (k2
i r i0)−1/3. (25)

For large enough α, the next intervention takes place
after a time that scales as

∆ti ≡ ti+1 − ti ≈ (2α)2/3 ttyp. (26)

The exponential growth that can take place in this time
interval is rather modest since

eki ∆ti ≈ 1 + (2α)2/3

(
ki
r i0

)1/3

. (27)

Using growth rates of order k0 ∼ 0.1 day−1 and i0 of
the order of iICU, the correction term becomes small for
testing rates r of the order of a few thousand per day.
This implies that the probability of a substantial
increase in infection numbers is very small, and
thus the strategy is safe.

The first intervention occurs at a time

∆t1 ≈ (2α)2/3 (k2
1 r i0)−1/3. (28)

In our model, it is very likely that the growth rate k2 is
smaller than k1 in magnitude so that the second inter-
vention occurs after the time

∆t2 ≈ ∆t1

(
|k2|
k1

)−2/3

. (29)

Similarly, the growth rate k3 is very likely to be smaller
than k2 in magnitude so that the third intervention takes
place at yet a longer time. If we neglect that the fitted
value kfit

i (t) differs slightly from ki (negligibly so when α
is large), our model ensures that

ρi ≡
|ki+1|
|ki|

(30)

is uniformly distributed in [0, 1]. After the (n + 1)-th
intervention the growth rate is down in magnitude to

|kn+1| = k1

n∏
i=1

ρi. (31)

To reach a low final growth rate kfinal, one needs the
typical number of interventions nint(kfinal) given by

nint(kfinal) ≈ 1 +
ln

kfinal

k1

ln ρi
= 1 + ln

k1

kfinal

. (32)

The time to reach this low rate is dominated by the last
time interval

T (kfinal) ∼ ∆tnint(kfinal)
≈ ∆t1

(
k1

kfinal

)2/3

. (33)



8

Thus, the system asymptotes to the critical state where
k = 0, but never quite reaches it. At late times T the
residual growth rate behaves as kfinal ∼ T−3/2.

By adjusting the confidence parameter α one can fi-
nally optimize the expectation value of one the measures
of performance that we defined above.

B. Partitioning the country - Several regions

In the case where several regions are distinguished,
G > 1, an intervention becomes necessary when λ1(t)
crosses upper or lower thresholds. However, it may well
happen that the eigenvector corresponding to λ1(t) is
well-localized, meaning that only some regions really
show growth with λ1(t). In this case one can distinguish
two strategies for intervention:

(a) Global strategy One always applies a policy
change to the whole country, as described above.

(b) Local strategy One applies a policy change only
in regions which have significant weight on the
unstable eigenvectors. This means only the cor-
responding diagonal matrix elements of K(t) are
changed. In the mean field model one would also
change f(t) as above, whereas for a nearest neigh-
bor model one could instead generalize the model to
have different fnm(t) for all nearest neighbor pairs.

Likewise, regions that have im < i∗ and have negligible
overlap with eigenvectors whose eigenvalues are above n,
could release some restrictions, before others do.

This model and its generalizations allow us to calcu-
late both economic and health impact. It is important to
assess how the global and the local strategy perform in
comparison. Obviously this will depend on the variability
Q, which is currently not known, but will be a measurable
quantity in the future. At that point one will be able to
decide whether to go for the politically simpler route (a)
or the heterogeneous route (b) which is presumably eco-
nomically favorable. We are currently engaged in coding
the model with the perspective of running it continuously
with the best available current data and knowledge and
will report on these activities in subsequent memoranda.
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