

Test Measurements with the Technical Prototype for the Mu3e Tile Detector

Kirchhoff-

Institut

Konrad Briggl, Huangshan Chen, <u>Hannah Klingenmeyer</u>, Yonathan Munwes, Wei Shen, Tiancheng Zhong and Hans-Christian Schultz-Coulon

Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany

The Mu3e Experiment

searching for the **lepton-flavour violating**

The Tile Detector

- to be installed on recurl stations (up- and downstream of target)
- scintillator tiles (≈ 6x6x5 mm³)
- signals read out by silicon photomultipliers (SiPMs)
- dedicated read-out ASIC MuTRiG

targeted timing resolution < 100 ps

structure:

- 2 x 16 tiles per **submodule**
- 14 submodules per module
- 7 modules per full recurl station
- 2 recurl stations (Mu3e phase I)
 - \rightarrow more than 6.000 channels in total

Development of a Technical Prototype

assembly:

design and equipping of \bullet dedicated front end-boards (FEBs)

Prototype Measurements at DESY

- two testbeam campaigns in ulletFebruary and June 2018 at DESY
- prototype consisting of **three** \bullet submodules

- \rightarrow chip bonding
- \rightarrow soldering of SiPMs and components
- individual tile wrapping with reflective foils
 - \rightarrow reduce optical cross-talk
- gluing of tiles to SiPMs \bullet
- assembly of submodules to cooling structure
 - \rightarrow cooling support structure produced in local mechanics workshop

in progress:

- development of production and assembly line for full detector
 - \rightarrow FEB equipping in local electronics workshop
 - \rightarrow dedicated tooling for wrapping and gluing procedures
 - finished prototyping stage
 - \rightarrow simplified assembly to cooling structure to reduce risks of damage
- development of testing and QA scheme in the laboratory \bullet
 - \rightarrow gluing and assembly within tolerance limits

- \rightarrow one serving as trigger
- \rightarrow two devices under test (DUTs)
- moveable in height and angle with \bullet respect to beam

- different contributions to ToT spectrum
- \rightarrow blue: particle fully traversing the tile
- \rightarrow red: crosstalk
- \rightarrow green: particle grazing tile
- excellent timing measurements achieved
 - \rightarrow single channel resolution at **45 ps**
 - \rightarrow down to \approx 18 ps possible for 8 hits per track

Thermal Simulation Studies of the Tile Detector

- implementation of prototype design in CAD software
- finite-element simulation of heat flux to investigate cooling system
 - \rightarrow ASIC and SiPMs implemented as heat source
 - \rightarrow water-cooled aluminium support structure

- \rightarrow ASIC functionality
- \rightarrow SiPM characteristics

excellent agreement of simulation with measured data

15th Vienna Conference on Implementation

Feb 18-22, 2019

Contact: hannah.klingenmeyer@kip.uni-heidelberg.de