3. Muonium and muonium spectroscopy

Muonium, Mu = p*e™, is a true Hydrogen isotope.

Properties:
Mass: My, =0.1131my = 207.77 m,

_ _ m, M
Reduced Mass: My, = 0.9956 My =(————)=m,

m,, +Me
2
Bohr Radius (n=1): a,,, = 1.0044a, apy = Aingohz =0.05315 nm
M€
72
(ap=4neg —)
me

generally (n-th level): r,, = nza,\,Iu

lonisation energy: Ry, = 0.9956 R Rymy = rT]'\"—“e4—13 54 eV
LM y MU meg)2on? T
R = mee4 _ onzmec2
' (Bmeg)?2n® 2
for the n-th level: R'\g“
n
: . 2 1
Hyperfine coupling: A,,, =3.1423 A Ay = —Ho¥e |up|9,nb 3
3 T apmy
= h - 4463.3 MHz

"Nuclear - gyromagnetic
factor : v, =3.18335y, T 13.5534kHz /G =135.534 MHz /T

2n
Muonium gyromagnetic factor

in triplett state (F=1, M=+1):  yl, = 1.0033 7,  yi = %(ye-y“) =

21-1.3944 MHz/G
102.88y,,

(in weak fields)

Amy In €gs units: multiply with dn —>8?n instead of 2/3
Ho
Ry: Rydberg energy. lonization energy of a H-Atom with infinitely heavy nucleus.

Ry [eV] = hc R., [m™]
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Muonium is particularly interesting for spectroscopic investigations because:

e Simple, pure leptonic system.

* Only sensitive to weak, electromagnetic interaction, and gravitation.

« " :point like particle (from scattering experiments = dimension < 10 m=10"2fm
~ 1/1000 proton radius).

Muonium can be used to test fundamental laws and symmetries and for precision
measurements of fundamental parameters.

Examples are measurements of:

m
 Hyperfine structure = a, H—”, or —&

Hp Me
e Muonium 1s-2s measurements - new determination of fine structure constant a.
* Lamb shift (2S;,-2P1/2 ) in Mu not yet precise enough for comparison with theory

Hydrogen

Electron g-2 factor or (g-2)/2=a,, and Avﬁfs are among the best known quantities in physics.
E.g. a. known to 0.23 ppb = o with 0.32 ppb error.

Avﬁfs even known to 0.6 ppt (10™2), but theoretical description is only possible at ppm level

because of internal structure of the proton (radius, polarisibility). Similarly for 2S;,-2P1,
Lamb shift.

Fine - Dirac

2pg/ Ajz0

structure theory
2512 > Lamb

. Al=0 QED
2p1/2 shift
Gross . Bohr theory

structure aliid Schroédinger theory

191,«F2=1 ¥ HFS AF%0 Schrédinger theory
F=0 ~(1+0/21) and QED

Fig. 3-1: Some low lying energy levels of hydrogen atom (or muonium), not to scale.
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Enerqy level of muonium, n=1 und n=2

n**L, 3/2

228 9875 MHz Fine structure O(o’%)
1/2 _ yi F = J-degeneracy lifted
\_¢ 558 MHz || E=0 1 1047 MHz & Lamb shift
——F=1
2 [187 MHz
2P Mg
A =244 nm 1/2
J AV, = 2455 THz
3
A =244 nm
7 F | Hyper figle structure O(o*)
2 \ " AV,,..= 4463 MHz ~1.8107 eV
1°S HFS S

1/2

Life time 7, =2.2ps, both ground state and excited state decay with this time constant >
from uncertainty relation:

AEt=2h, AE=hAv.; — Avnatzzi =145 kHz (natural limit of precision)
T
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3.1 Theory of the enerqy levels of a muonium atom

The total energy of an electron in a one-electron atom can be expressed in the following way:

Ewt(n; J; I; F) = Ep(n; j) +Erm(N; j; 1) +Eqen(n; J; )+Ewnrs(n; J; 1; F; 1) +Estrong™ Eweak * Eexotic
[3-1]

Ep:  Dirac energy for an electron in a point like infinite heavy nucleus with charge
Z , which creates a potential V =—Zq/ r . The Dirac theory of the gross and fine-
structure for one-electron atom takes electron spin and fine structure into account.
i.e. it contains effects such as spin-orbit coupling + relativistic effects and Darwin
term, which originates from averaging the potential energy over the size of the
electron wave.

Eo(n; J) =mec? (f(n; ) -1) [3-2)
2 -1/2

£(n,j) = [1+ [Z—_"‘j ] [3-3]

o=t [0y - oy [3-4]

Erm :  Effects due to finite nuclear mass (relativistic and non relativistic).

Eoep QED-Effects (Lamb shift): radioactive corrections to the electron propagator ,
(Electron self energy, anomalous magnetic moment), vacuum polarization.

D
(a) (b)

Fig. 3-2: Lowest order QED contributions to the Lamb shift. (a) Electron self energy.
(b) Vacuum correction to the potential. The heavy lines represent the electron in an
external static nuclear field.

Eswong  Strong interaction - QED-effects of the vacuum polarization

Eweak Weak interaction (via Z-Boson exchange)

Eurs  Interaction between magnetic moment of the muon and electron

Eexoic  possible (non-Standard Model) exotic interaction between electron and ,,nucleus*
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3.2 Hamilton function of the hyperfine interaction

The Hamilton function of an electron in the field of a muon is given by*:

H= [P—qA.(R)]2 +0U1 (R)—Gettp (rot(A (R))

e

[3-5]

~fi.B

R and P are position and momentum of the electron, S its spin (in units of #), q its charge.

I' is the nuclear spin (muon). Let’s consider the terms, which originate from the vector
potential A.

. b, %R

AR =FOTE T [3-6]
At R

Where (i, is the magnetic moment of the muon.

The hyperfine Hamiltonian Hys is obtained, if we retain in [3-5] only the terms linear in A,

SR S . .
Hp =—2q [P-AI +A, -P]—geuB—rot(A,(R)) [3-7]
Me h

and put [3-6] in [3-7].

Coupling of the magnetic moment of the muon with the orbital momentum of the electron

Let’s consider the first term in [3-7]. With

L=RxP [3-8]

and the fact that 11, with Rand P commutes®, we get:

Byl n ho_ - &

Ht —_FHo 9 7w = _ _Ho - -B 3-9

hf A Zme R3 An 7] R3 Hy L [ ]
This corresponds to the coupling between the magnetic moment ﬁ“ and the magnetic field

(a<0)

g M4 L [3-10]

1 In this chapter we use [S]=[ /]
2Use: P-A o ﬁ-[ﬁuxﬁ]:ﬁu-[ﬁxﬁ]zﬁ“-[ and similarly for A-P
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This field corresponds to the current generated by the orbiting electron.

Rx dR, with 1= 9%

(Biot-Savart law: B

nR

Coupling with electron spin

Magnetic field created by the muon:

To avoid problems with singularities we consider first a muon with a finite radius py and take

R> p()

With [3-6] and BP = rotA,

oy -ta]_by o000
T

3 5
R R [3-11]

with p,[|Z , we get:

_Ho Xz
B, =—3u, —

X an Ha R®

_ Mo yz
By_ﬂguuﬁ
B _ Ko 3z2-R?
z 47[MH R®

[3-11] is also valid for R not much larger than py , since a spin % particle creates a dipolar
field.

The magnetic dipole term

If we insert [3-11] in —geuB(%)rot(A, (R)), we get for the magnetic dipole term (coupling

between electron spin and magnetic field, which is generated by the dipole moment of the
muon outside its “radius”).

[3-12]

HdIP_HO geMB 1 S 3(SR)(}1“R) :_ﬁ _Edip
" "4 n RS R2 ¢

The contact term

It takes into account the contribution of the ,,internal field “ B; (i.e. of the interaction

58



between magnetic moment of the muon and electronic spin density at the muon site)
R <pg: The field inside the nucleus (B;) can be obtained by the explicit integration of the

magnetic flux ® over half a sphere surrounding the dipole, taking into account that the
integral is zero.

o 2
B =-%pu, — 3-13
1 4TC uu pg [ ]

Contact term in [3-5]:
S Lo R
_geHB(E)rOt(AI (R)) =—H¢ - B;

The corresponding operator Hf is obtained by calculating the matrix elements between the
basis wave functions. We get®:

8r S. - 2 .=
Hip =40 Ty P2 5(R) =~ ol i (R) [3-14]

Note that the term is finite and does not depend on the choice of py.
With Hp = Hp + H3P 4+ HE;
_ 1
and fi, =g,ub [3-15]

With the three contributions, the Hamilton operator of the hyperfine interaction (g. = 2)
becomes:

2 1. T-BYS-RY T.S e
Hpp =20 Helasu L +3(LRIGR) 1S, 8—TEI-SES(R) [3-16]°
—_ Y
e-Angular moment Dipol (e-spin) Contact term

(e-Spindensity
at the muon site) |

Dipolar and contact fields are also present in the solid. For instance, localized magnetic
moments or nuclear moments produce dipolar fields and the spin density of conduction
electrons (or delocalized electrons) generates a contact field at the muon site.

* (Note here g <0)
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Calculation of the hyperfine structure of the 1s-level

For the 1s level the first two terms of [3-16] are zero, since
<L> and <Is |dipolar term| 1s >=0 because of the spherical symmetry of the 1s-state.
Only the contact term contributes.

Matrix element of the contact term

- S
with i, = geHB%

<n=11=0,m_=0,mg,m, ‘—%uoauﬁ@(ﬁ) n=11=0,m_=0,mg,m, > [3-17]

:A<m5,m,‘T-§‘ms,m|> [3-18]

2 1 L
A= 100, 5. HB‘h_Z <n=11=08R) [n=11=0>

2 3-19
‘(pls(o)‘ [ ]
with <r| n=11=0>= e ™ =¢,(r) [3-20]
ma,,,”
_ 2 1
<n=11=0B(R)n=1,1=0>=p, (0)‘ - [3-21]
ma Mu

2 1 1 energy
A=2 u - = Al= 3-22
SHo0, e s T A= 5 [3-22]

2 m,m
With ay,, = ingohz (Bohr radius), My, =———-—= Me (takes into account the
mMUq me + m},l 1+ &
m

il
q° 1
finite “nuclear” mass), o= (fine structure constant in Sl units) and goHo=—

41‘580hC C

For spectroscopy [3-22] can also be written in terms of precisely known quantities:



A=2g g, e m 2ot (1 Mey3 L [3-23]
37" m m, G

n

Summarizing the contact operator for the 1s state can be simplified to

C _AT.3
Hpe =Al-S [3-24]
With A>0 and [I]=[S]=[]
Eigenvalues and eigenstates of the contact term of the 1s-level
The degeneracy of the 1s-level is 4-fold. Instead of the basis

1 1

S=—,I==,mg,m, > 3-25
| S=5.1=2.ms,m, [3-25]
we take the basis
| F,mg > [3-26]
F is the total moment eigenvalue of the operator F=S+1: [3-27]
I-S is diagonal in the basis [3-26]. With L=0 (s level)
AT§=2(F2_12_g?) [3-28]

2
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2
Al-SJF.m. >=A%[F(F+1)— 1(1+1) - S(S+1)|F. mg: >

2
= h_ F=1
4
2
= —A3i F=0
4
1s
N
Fine structure shift
F=1
A\
154
F=0

[3-29]

Eq. [3-23] is not accurate enough for high precision spectroscopy of muonium or of hydrogen
and positronium. One has to consider additional correction terms arising from QED, weak

interaction, and eventually exotic interactions.
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However, the hyperfine-Hamilton function has still the form:

HEe = Al-S [3-30]

If we write the splitting in terms of frequency we get:

EhfS(le)_EhfS(F:O) = hAVhfs :hZA [331]

-3
M 16 2 Ry u m
AVhf;J :?(Za) __ulil"'m_e} (1+8rad + &€rec +8rad—rec)+ AV \yeak + AVexotic

h pg u [3-32]
a’m,c?
where Ry = € and zZ=1
2
Theoretical value:
Avih = 4463302891 (272) Hz (63 ppb) [3-33]

Better known for muonium than for H. For H one has to consider additional terms due to the
proton structure:

+ €nuclear radiust  Enuclear polarization-

The theoretical uncertainty is 560 ppb (whereas the experimental uncertainty is presently
0.6 ppt).
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3.3 Spectroscopy of the hyperfine splitting in Mu

Method: Microwave spectroscopy of the ground state in an external magnetic field.
We consider the Zeeman effect on the 1s level.

Hamilton function:

H=—fi, -B-fi,-B+AI-S

with B|| Z and Hy, :VuT ([NN=n1) [3-34]

and using the Larmor frequencies of muon and electron:

H=o,l,+oS, +Al-S [3-35]
where:
e
w, = —g—ﬂﬂB , @0,<0
2 m,
[3-36]
e
e :iug , @, >0
2 mg

To determine the energy eigenvalues, we must diagonalize the matrix of the Hamilton
function H [3-35].

We obtain as energy eigenvalues:

N AR? 1
El:TJrE(weer”):T+E(ge|ﬂ5|_g#ﬂ€)8
ARk An® 1
E2 :T_E(a)e +a)ﬂ):T_§(99|luB|_g:u’uél)B
AR | AR, R AR AR® [ =
E.=— (Y (o —w,)? == 4 1+ x2
3 4 \/( 2 ) 4( e ﬂ) 4 2
Ej=———- Py @em )" =X
4 4 ( 2 ) 4( e = @) 4 2
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Breit-Rabi diagram

—_ 10
2 I (Mg,M,) He My
% 8 — (142, 1/2)
= /
S
© 6 I
= B o (1/2-1/2)
2 4 - T Ju
w i
2 |-
0 =
2
s
i -1/2,-172)
s \
8 -1/, 1/2) H
_10 i 1 1 1 1 1 1 1 1 | 1 1 1 1 | 1 1 1 1 L 1 l: T: 1
0 0.5 1 1.5 2 2.5

Magnetfeld B[ T ]

Fig. 3-3: Energy-level diagram for muonium in the 1°Sy, ground state in a magnetic field. At
zero magnetic field the energy difference between the F=1 and F=0 states is the hyperfine
splitting hAvpgs.

The field is generally expressed in terms of the dimensionless parameter

«— (Qe |ug|+9,1E)B _ (9e M| +9,1p)B _B

[3-38]
AR? NAV g Bo

By is the field where the Zeeman splitting of the electron and the muon is equal to the
hyperfine splitting. For muonium By=0.158 T.
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In analogy we obtain the eigenstates:

| 1>=| MS:%,M,:%> =| F=LMg=1>

| 2>=] MS:—%,Mlz—%> =| F=LMg=-1>
| 3>=sinp]| MS:—%,M,:%>+COSB| MS:+%,M|:—%>
| 4>=cosp| MS:—%,M,:%>—sinB| MS:+%,M,:—%>
where

1 X 1/2
cosﬂ:—2{1+(1+xz)1/2}

[3-39]
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We express the energy differences as frequencies:

E,—-E,=hv
1 3 13 [3_40]
E,—E,=hv,
Then we get for the sum or difference of the transition energies:
hV13 + hV24 = hAVmg = hZA
hvys —hvag = 2080, B+hAviY | @+x?)"? —x| [3-41]

o (G6|us|+9,u8)8B

hA v
To take into account the relativistic binding corrections in muonium we use in [3-41] g, and
g,, instead of the values for free particles g,and g,,.

o> a’m
rog & M
g, =09, 3 "2 rnu]
. . [3-42]
0, =gufL- %+ ST
¢ ¢ 3 2 m, 47

B can be expressed as a function of . and of the NMR frequency.
hv,=2u,B [3-43]
Mu

From the sum of the transition frequencies Avyy is determined and from the difference (eq.

we obtain also the

n
[3-41]) by using p,, = g“zuB

ratio of the muon and proton magnetic moments L :
Hp
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Principle of the experiment (W. Lin et al., Phys. Rev. Lett., 82 (1999) 711)

Stop polarized positive muons in Kr in a magnetic field B antiparallel toT (initial
muon spin direction)
In Kr muonium is formed in the states (each with 50% probability since the electrons

are unpolarized)
1

1
Mg=—> M, =—=> level 2
| S 2 | 2 ( )
1 1
and |[Mg = +E’M' = _§> (level 3)

With microwaves one induces the transitions in level 4 (— hv,,)
and in level 1 (— hv,,) .

The transition frequencies are determined from the positrons rates with and without
microwave field (one can vary either the microwave frequency or the magnetic field)

Positron

Pressure

Counter CH2 Absorber Vessel

Fig. 3-4: A schematic view of the experimental apparatus

- Vi % Dl 10 cm
. AH Beam Pipe
Microwave I
Cavity [ Beam/ \Degrader
Cap| Krypton eounter - u+
3 mil . M
imilcu 7| [Mylar 4 mil !
0.5 mil Cu Kapton
T \\\%& “BPM
\m\\ Aluminum TTTTT
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Positron signal (as a function of the magnetic field or of the microwave frequency)

/ /

Cnnvenl.iunla.l__
4 10

' T -
. Conventional

13

3.12-4.07s]

30

20

Signal (%)
Signal (%)

10

6.92+7.87us]
420

&
1 | I L Il P

0
300 400 400 _ 500 600 700
v, - 72000 (kHz) v - 1897000 (kHz)

Fig. 3-5: Resonance curves obtained by sweeping the magnetic
field using a conventional method, and from different time
windows after muonium production are shown on the left.
Microwave frequency sweep curves are on the right. The solid
curves are fits to the theoretical line shape |

Result:

AviP =4 463 302 765(53) Hz (12 ppb) [3-44]
Avih = 4463302891 (272) Hz (63 pph)
w. /b, =3.18334513(39) (122 ppb) [3-45]

(Ref. Liu et al., Phys. Rev. Lett. 82 711 (1999))

m e
From [3-45] via —~ = Su Ko p .
Me 2ty Hp

my/me = 206.768 277(24) (120 ppb) can be determined [3-46]

Alternatively one can use m,/m. or o as parameter in eq. [3-32] and determine them from
the experimental result for Avye .

For instance with m,/m, from [3-46] one gets:

o' =137.0359963(80) (58 ppb)
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3.4 Measurement of the 1s-2s transition in muonium

(Doppler free 2-photons spectroscopy)

e 1 photon transition not allowed (because of Al =+1)
e Gross structure interval
3 Me 15 2 0
Vigos = —CR (1-—2) =2.45-10"Hz heR, =Ry, =mec”—  [3-47]
4 m, 2
R, (Rydberg constant) is known to 8. 10°*?

14
o Natural width due to lifetime of the muon: v, = 145 kHz > —“-~6-10""
V1s2s

e A measurement of vy at the 10”° level allows an

m : 9 m 7
accuracy of — givenby 10° —~ ~10
m m

e e
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Measurement principle (Doppler free spectroscopy)

pt ey Eh
0 —
1 2
=R e — 2 51 F=1
4 K i 3
S S
2
A, |~ 15k
1
(a) )
laboratory frame rest frame of atom

v
v=0
— @{:V -~ — () -—
0} z o (0, (i
=(1-vfe) « @, =(l+vle)e(

Principle of the 1s-2s muonium experiment. a) The transition between the 1s- and 2s- levels is

induced by the absorption of two counterpropagating photons (A= 244.2 nm). The metastable
2s-state is ionized by a third photon. b) The transition via two photon absorption is to first

order Doppler free.
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-

e from Muon Decay

">~ Scintillation Counter

~ LensC

83

Apparatus for the 1s-2s experiment at the Rutherford Appleton Laboratory (pulsed muon
source, UK).
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Production of thermal muonium in vacuum. Efficiency for different materials. The beam
momentum in optimized for maximum efficiency.

Target material | Target density  Target Thickness Optimum Muonium

[mg/cm®] [mg/cm?] Fraction

e /psiop [%0]

SiO, powder 32 4.6 17(2)
SiO, powder 32 2.8 15.9(3.6)
SiO, powder 32 9.0 8.27(31)
SiO; aerogel 5 7.5 2.32(13)
SiO; aerogel 18 9 1.57(20)
W Foil (2130K) 19.3 96.5 4(2)
Ce0/Cro
Fullerenes ~1400 ~210 1.85(23)
Cotton 10 3.6 2.25(16)
Cotton coated
with Si02 17 5.8 11.43(31)
powder
Microchannel ~2000 ~100 2.44(31)
Plate
Results

AviR =2455528941.0(9.8) MHz (4 ppb)

From the comparison with the theoretical value Avls" = 2 455528 934.5 (3.6) MHz

m

> — = 206.76838(16) (0.77 ppm)

m,
or alternatively: from the comparison with the theory and the fact that the dominant term in

4
[3-47] is proportional to Ry oc o oc g% -q,” oc (q—“)z(q;z) oc (q—”)2
e Oyye Qe

> (q—”) =-1-1.0(2.0)-107° (2.0 ppb)

e

This is a test of charge equality between two particle generations.
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Muon mass results, summary:

Extracted from experiments:

m .
m“ (uWSRBr)  =206.76835(11)  (0.53 ppm)

e

m .
£ (u Atoms) =206.76830(64) (3.1 ppm)
m

e

m .
m“ (M 1s-2s)  =206.768 38 (16)  (0.77 ppm)

e

m .
— () = 206.768 270 (24)  (0.12 ppm)

e

Using the Muonium hyperfine structure measurement and the theory:

m .
m“ (Mhss) = 206.768 267 0 (55) (0.027 ppm)

e

Value in Particle Data Book (2014):

3

) = 206.768 284 3(52) (0.025 ppm)




Summary of precision experiments:
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