GENERAL ENERGY DEPARTMENT

Grafting of Styrene onto Plasma-Activated Polypropylene

J. Conder*, S. Urbonaite, P. Novák, L. Gubler

Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland *corresponding author: joanna.conder@psi.ch

Plasma-induced graft polymerisation...:

... can activate only the surface-near regions (100 Å) [2]

Characterisation of Grafted Membranes

- ... can introduce favourable features into the material [3]
- ... does not strongly affect the mechanical properties of the material [2]

Graft level / mass-%

Film type:

(1) Porous substrate (15µm, Treo-Pore, model system) (2) Dense substrate (15µm, Goodfellow, for comparison)

Film activation: (1) Plasma activation (30 W, 5 min each side) (2) Electron-beam irradiation (15 kGy)

Film grafting: Styrene (20 v-%), iPrOH (70 v-%), H₂O (10 v-%), @ 60°C

Film sulphonation: 2% CISO₃H in CHCl₂ @ RT followed by hydrolysis @ 80°C for 8h

Conclusions

Highly grafted PP porous membranes in a shorter reaction time

- Good proton conducting membranes based on PP porous substrate
- Enhanced grafting kinetics due to the addition of homopolymer inhibitor

References:

[1] S. S. Zhang, *Journal of Power Sources* 231 (2013) 153 – 162

[2] T. Desmet, R. Morent, N. De Geytner, C. Leys, E. Schacht, P. Dubruel, *Biomacromolecules* 10 (2009) 2351 – 2378 [3] X. Chi, H. Ohashi, T. Tamaki, T. Yamaguchi, Journal of Photopolymer Science and Technology 24 (2011) 471 – 473 [4] M.M. Nasef, E.S.A. Hegazy, Progress in Polymer Science 29 (2004) 499 - 561

Funding by the Swiss National Science Foundation is gratefully acknowledged (project number: 200021_132382)