

ELECTROCHEMISTRY LABORATORY

One-pot synthesis by anhydrous sol-gel chemistry and electrochemical study of mixtures of iron sulfide and iron oxide

Sébastien Sallard*, Elias Castel, Claire Villevieille, and Petr Novák

Paul Scherrer Institute, Electrochemical Energy Storage Section, CH-5232 Villigen PSI, Switzerland *Sebastien.Sallard@psi.ch

Electrochemical reaction

➢ Expected electrochemical processes with metal oxides/sulfides Insertion : M_yX_z + a Li⁺ + a e⁻ ⇒ Li_aM_yX_z Conversion: M_yX_z + 2z e⁻ + 2z Li⁺ ⇒ z Li₂X + y M⁰ M = metal; X = oxygen or sulfur

- > Magnetite, Fe_3O_4 , shows an insertion mechanism for U > 1 V vs. Li⁺/Li
- and a conversion mechanism for U < 1 V vs. Li⁺/Li.
 Gregite, Fe₃S₄, was found to cycle between 0 V and 3 V vs. Li⁺/Li. [1], but electrochemical processes were not identified.

Synthesis by anhydrous sol-gel route

ERIES

m

- Benzyl alcohol (b-OH) [2] and benzyl mercaptan (b-SH) [3] are solvent and co-reactant simultaneously.
- Formation of nanocrystalline powders at low temperatures.
- Mixtures of b-OH and b-SH: synthesis of one-pot mixtures of iron oxide and iron sulfide or iron oxysulfide ?!?

Electrochemistry

Cyclic voltammetry in half-cell configuration (50 µV/s, electrolyte LiPF₆ 1M in ethylene carbonate/dimethyl carbonate 50/50 by weight)

The greigite shows an insertion mechanism for E >1 V vs. Li⁺/Li (shape of 1st and 2nd CV cycles are similar) and a conversion mechanism for E < 1 V vs. Li⁺/Li (shape of 1st and 2nd CV cycles are different).

The one-pot mixture (x = 0.25), even mostly composed of the greigite, has electrochemical properties close to the maghemite [4].

Conclusions

- The greigite and one-pot iron sulfide-iron oxide crystalline mixtures can be synthesized by anhydrous sol-gel chemistry.
- The reduction mechanisms of the greigite have been determined as an insertion and a conversion mechanism for E > 1 V and E < 1V vs. Li⁺/Li, respectively.

References and acknowledgement

[1] Paolella et al., Chem. Mater., 2011, 23, 3762.

- [2] Pinna et al., Angew. Chem. Inter. Edit., 2008, 47, 5292.
- [3] Ludi et al., Chem. Commun., 2011, 47, 5280.
- [4] Pernet et al., Solid State Ionics, 1993, 66, 259.

Financial support from BASF SE is gratefully acknowledged.