ELECTROCHEMISTRY LABORATORY

Combined in situ XRD and XAS studies on materials for Li-ion batteries

Peter Bleith, Hermann Kaiser, Petr Novák, Claire Villevieille
Paul Scherrer Institut, Electrochemical Energy Storage Section, CH-5232 Villigen PSI, Switzerland
Peter.Bleith@psi.ch
Goal:
Construction and validation of a combined in situ cell for XRD and XAS to study reaction mechanisms of materials for Li-ion batteries

XRD (X-ray diffraction):

- Phase identification
- Long range order

XAS (X-ray absorption spectroscopy):

- XANES: Oxidation state \& coordination - EXAFS: Short range order

Studied material: $\mathrm{Fe}_{0.5} \mathrm{TiOPO}_{4}$ 1.5 empty sites per formula unit But reaction with 5-3 Li^{+}per formula unit

How are the extra Li^{+}accommodated? What is the reaction mechanism?

Successful combination of XRD and XAS in one in situ cell

per fo

$\mathrm{Ti}^{3+} \rightarrow \mathrm{Ti}^{4+} \rightarrow \mathrm{Ti}^{3+}$
Reversible change back to $\approx \mathrm{Fe}_{0.5} \mathrm{TiOPO}_{4}$

Insertion: $\mathrm{Ti}^{4+} \rightarrow \mathrm{Ti}^{3+}$
\Rightarrow new phase " $\mathrm{LiFe}_{0.5} \mathrm{TiOPO}_{4}$ "

