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Artificial spin systems consist of mesoscopic single domain magnetic islands typically 

arranged on a two-dimensional lattice and coupled together via magnetostatic interactions. 

Such systems have attracted considerable interest due to their complex magnetic phase 

diagrams [1] and moment excitations which resemble emergent magnetic monopoles [2]. 

Here, we apply X-ray Resonant Magnetic Scattering (XRMS), measured at the RESOXS 

endstation of the SIM beamline at the SLS, to look at zero-field magnetic correlations in 

thermally active artificial kagome spin ice with sub-70 nm islands, see fig. 1a. The energy 

of circularly polarized X-rays was tuned to the Fe L3 absorption edge, yielding sensitivity 

to the magnetisation. Magnetic diffuse scattering was measured at several temperatures 

above the blocking point of a thermally active artificial kagome spin ice (fig. 1b) [6]. 

Experimental data can be understood using Monte Carlo simulations and subsequent 

numerical calculation of scattering patterns using kinematic scattering theory [3, 4, 5], see 

fig. 1c. Magnetic diffuse scattering indicates zero-field ice-rule correlations of the kagome 

ice I phase with “two moments in – one moment out" and vice versa at each vertex [6].  

They are reminiscent of the correlations in atomic spin ice that produce magnetic diffuse 

scattering with pinch points or bow ties [7, 8]. 

 

 
Figure 1: (a) SEM image of the artificial kagome spin ice with sub-70 nm islands. (b) Experimental scattering 

pattern from artificial kagome spin ice obtained at Fe L3 edge [6]. (c) Numerical calculation of the magnetic 

scattering pattern using moment configurations from Monte Carlo simulations. Magnetic scattering is well 

reproduced indicating kagome ice I magnetic phase [6]. 
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With three dimensional artificial and composite materials offering opportunities for applications 
within many fields, a full structural and chemical characterisation is critical for further progress. 
However, whilst there are a variety of complementary magnetic imaging techniques suitable for 
imaging 2D magnetic systems, new techniques with which to study 3D magnetic systems must be 
developed. Here we first present resonant ptychographic tomography, where we achieve element-
specific 3D characterization of a cobalt-coated artificial buckyball polymer scaffold at the 
nanoscale. By performing ptychographic x-ray tomography at and far from the Co K edge, we are 
able to locate the Co layer in our sample with a 3D spatial resolution of 25 nm, and with a 
quantitative study of the electron density we can determine that the Co layer is oxidised [1]. 
Secondly, by performing ptychographic scans with circularly polarized X-rays (hard X-ray dichroic 
ptychography), we show that one can exploit X-ray magnetic circular dichroism to obtain images 
of the magnetic configuration of a micrometre-thick FeGd multilayer at both the Gd L3 and the Fe 
K edges, demonstrating 50 nm spatial resolution in 2D [2]. Further combination of dichroic 
ptychography with current tomographic techniques will enable mapping of the magnetization 
vector field with sub-100 nm spatial resolution within micrometer-size magnetic systems.  
 
 

 
 

Figure 1: (a) An SEM image of the cobalt-coated artificial buckyball, investigated with 
resonant ptychographic tomography. A rendering of the element specific tomogram is shown 
in (b), where the cobalt is shown in orange and the polymer resist in blue. 
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Fe-based langasites [Ba3(M)Fe3Si2O14 where M=Nb,Ta] are chiral antiferromagnets  which crystallize in an 
enantiopure phase. In the ground state, the magnetic moments in the triangular lattice of these langasites 
rotate from one unit cell to the next in a helical fashion with an incommensurate propagation vector 
(0,0,τ) with τ ≈ 1/7. Dzyaloshinskii-Moriya interactions cause magnetic Fe3+ ions possess out-of-plane 
dipole moments sinusoidally modulated with the same propagation vector resulting in a helical butterfly 
structure. Recent neutron scattering experiments have found that the in-plane magnetic moments are 
“bunched” into an irregular helix, due to magnetic anisotropy. At the same time, bulk polarization studies, 
Moessbauer spectroscopy as well as neutron scattering studies present contradicting pictures regarding 
the crystal symmetry in the low temperature magnetic phase, which is fundamental to understand the 
magnetoelectric interactions. We have performed extensive soft x-ray diffraction experiment at the Fe L2,3 
and O K-edges to study magnetic and higher harmonic reflections. To explain the differences in the 
observed spectral shapes, detailed ab-initio calculations based on the FDMES code have been carried out. 
Our results lead to a better understanding of the origin of the satellite reflections, and indicate a further 
lowering of crystal symmetry. 

 

Figure 1: (left) The experimentally observed spectral shapes of the magnetic satellites in Ba3TaFe3Si2O14 at the Fe L3 
resonance; (right) Calculated energy dependence of the anisotropic charge and magnetic scattering multipoles 

contributing to the (0,0,τ) satellite reflection (Calculations based on the spherical harmonic expansion utility of the 
FDMNES code for a pure dipole E1-E1 process) 
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The control of the magnetic configuration of ferromagnetic materials without the application of 
magnetic fields has recently attracted much interest, as the achievement of such a goal would 
drastically reduce the energy consumption involved in the magnetization switching in devices such 
as e.g. magnetic memories. This has led, in particular, to an active investigation of both artificial and 
natural multiferroic materials [1], focusing on the magneto-elastic and magneto-electric couplings 
(i.e. materials where the magnetization can be controlled either by an applied strain or by an electric 
field). 
One of the promising artificial multiferroic materials based on magneto-elastic coupling consists of 
the combination of a magnetostrictive (e.g. Ni) and a piezoelectric material (e.g. PMN-PT) [2-4]. For 
this system, the straining of the magnetostrictive material (by applying an electric field to the 
piezoelectric) leads to considerable modifications of the magnetic configuration of the 
magnetostrictive material, which can be reliably and reversibly controlled [2, 3]. However, due to 
intrinsic limitations of the piezoelectric materials (e.g. regarding their RF properties), the dynamical 
behavior of the magnetostrictive material as a function of the applied strain was not yet investigated. 
Here, we employ an alternative path for the generation of a static strain without the use of 
piezoelectric materials. This setup employs x-ray transparent silicon nitride membranes, which 
enable also the investigation of the sample with high-resolution scanning transmission x-ray 
microscopy (STXM), not possible with piezoelectric substrates. The setup is based on an 
environmental gas cell used for in-situ imaging of atmospheric particulates [5]: by applying a 
pressure difference between the two sides of an x-ray transparent membrane, the resulting bending of 
the membrane itself (see Fig. 1) can be used to generate relative strains on the order of Δε/ε ≈ 10-4 
(calculated [6]), i.e. comparable to those that can be generated by piezoelectric materials. In this 
presentation, the first measurements on magnetostrictive materials using this setup will be illustrated. 
 

 
Figure 1: XMCD-STXM images of a 2 m Ni square as a function of an applied uniaxial tensile strain. A strain-dependent 
uniaxial anisotropy can be observed. The grayscale arrow illustrates the direction of the magnetic contrast in the images. 
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