LOGGING IN AND GETTING STARTED

1. Basics

lambda: 2.21

data path: \orion\home\data\yyyy\xxx

file names: orion2012nxxxXXX.dat

2. Getting started

Logging in: In the window type:

Username: orion Password: ORIONLNS

Starting six: Click on the console icon and type six at the command prompt:

>> six

Starting the plot window: Click on the console icon and type 'topsistatus' at the command prompt:

>> topsistatus

Select Orion from the drop-down menu.

Or plot the data in fit: Click on the console icon and type 'fit' at the command prompt:

>> fit

- dat [run number] : opens data file
- \bullet p: plots the contents
- \bullet q: closes plot screen
- fun 0 : generates single peak fit parameters
- f: fits the data

Type 'help' for basic guidance and for further help please give me a ring.

3. Running a sample

Tell us who you are: Update the following information in six and the lab book:

user [your name (e.g. Amy Poole)] sample [your sample (MnWO₄)]

What you are doing: You can update the title for the scan in six:

title [scan title (004 peak search)]

Start measuring: Update the cell parameters and generate an initial UB matrix:

cell [a b c $\alpha \beta \gamma$] initaux [h₁ k₁ l₁] [h₂ k₂ l₂]

- [h₁ k₁ l₁] is parallel with the beam
- [h₂ k₂ l₂] lies in the scattering plane

Running a batch file: If you don't know where your reflections are it is better to sweep out a large portion of reciprocal space with a batch file. There are examples of batch files in the folder \home\orion\batch. To use them:

- \bullet To find out the current path:
 - projectdir
- To change the path:

projectdir [pathName (\home\orion\batch\amy)]

• To run a file: batchrun [file name]