Symmetry constraints in solving magnetic
structures by neutron diffraction:
representation analysis and Shubnikov groups

Vladimir Pomjakushin
Laboratory for Neutron Scattering, PSI

This lecture:
http://sing.web.psi.ch/sing/instr/hrpt/doc/magdif| 3.pdf

lecture from yesterday: Introduction to
experimental neutron diffraction
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Purpose of this lecture is to show:

|. Basic principles of magnetic neutron diffraction.

2. Classification of the magnetic structures that are used in the
literature, such as Shubnikov (or black-white) space groups and
irreducible representation notations. Relation between two
approaches.

3. How one can construct all possible symmetry adapted magnetic
structures for a given crystal structure and a propagation vector
(a point on the Brillouine zone) using representation (rep) analysis
of magnetic structures. This way of description/construction is
related to the Landau theory of second order phase transitions
and applies not only to magnetic ordering, but generally to any
type of phase transitions in crystals.
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Literature on (magnetic) neutron
scattering

Neutron scattering (general)

S.W. Lovesey, “Theory of Neutron Scattering from Condensed Matter”,
Oxford Univ. Press, 1987.Volume 2 for magnetic scattering. Definitive
formal treatment

G.L. Squires, “Intro. to the Theory of Thermal Neutron Scattering”, C.U.P,
1978, Republished by Dover, 1996. Simpler version of Lovesey.

All you need to know about magnetic neutron
diffraction. Symmetry, representation analysis

Yu.A. lzyumovw,V. E. Naish and R. P. Ozerov, “Neutron diffraction of magnetic
materials”, New York [etc.]: Consultants Bureau, 1991.
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Literature on (magnetic) symmetry and
magnetic neutron diffraction

All you need to know about magnetic neutron diffraction.
Magnetic symmetry, representation analysis

Yu.A. lzyumov, V. E. Naish and R. P. Ozerov,

“Neutron diffraction of magnetic materials”, New York [etc.]:
Consultants Bureau, 1981-1991.

Groups, representation analysis, and applications in physics

J.P Elliott and P.G. Dawber
“Symmetry in physics”, vol. 1,1979 The Macmillan press LTD
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Web/computer resources to perform group theory
symmetry analysis, in particular magnetic structures.

General tools for representation analysis, Shubnikov groups, 3D+n,

and much more...
Web sites with a collection of software which applies group

theoretical methods to the analysis of phase transitions in crystalline
solids.

* Harold T. Stokes, Dorian M. Hatch, and Branton . Campbell

ISODISTORT: ISOTROPY Software Suite, http://iso.byu.edu
ISOTROPY Software Suite

Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell, Department of Physics
and Astronomy, Brigham Young University, Provo, Utah 84606, USA,

* Bilbao Crystallographic Server
bilbao crystallographic server http://www.cryst.ehu.es/

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3


http://iso.byu.edu
http://iso.byu.edu
http://www.cryst.ehu.es
http://www.cryst.ehu.es

ISOTROPY Software Suite 150.byu.edu

Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell, Department of Physics and Astronomy, Brigham Young University,
Provo, Utah 84606, USA, stokesh@byu.edu

Description: The ISOTROPY software suite is a collection of software which applies group theoretical methods to the analysis of
phase transitions in crystalline solids.
How to cite: ISOTROPY Software Suite, iso.byu.edu.

References and Resources

Isotropy subgroups and distortions

e |SODISTORT: Explore and visualize distortions of crystalline structures. Possible distortions include atomic displacements,
atomic ordering, strain, and magnetic moments.

e |SOSUBGROUP: Coming soon!

e |SOTROPY: Interactive program using command lines to explore isotropy subgroups and their associated distortions.

e SMODES: Find the displacement modes in a crystal which brings the dynamical matrix to block-diagonal form, with the smalle
possible blocks.

e FROZSL.: Calculate phonon frequencies and displacement modes using the method of frozen phonons.

Space groups and irreducible representations
e |SOCIF: Create or modify CIF files.
FINDSYM: Identify the space group of a crystal, given the positions of the atoms in a unit cell.
New! ISO-IR: Tables of Irreducible Representations. The 2011 version of IR matrices.
ISO-MAG: Tables of magnetic space groups, both in human-readable and computer-readable forms.

Superspace Groups

e ISO(3+d)D: (3+d)-Dimensional Superspace Groups for d=1,2,3

e |SO(3+1)D: Isotropy Subgroups for Incommensurately Modulated Distortions in Crystalline Solids: A Complete List for One-
Dimensional Modulations

e FINDSSG: Identify the superspace group symmetry given a list of symmetry operators.

e TRANSFORMSSG: Transform a superspace group to a new setting.

Phase Transitions

e COPL: Find a complete list of order parameters for a phase transition, given the space-group symmetries of the parent and

subgroup phases.

e INVARIANTS: Generate invariant polynomials of the components of order parameters.
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Computer programs to construct symmetry adapted
magnetic structures and fit the experimental data.

Workhorses: Computer programs for representation analysis to be used
together with the diffraction data analysis programs to determine magnetic
structure from neutron diffraction (ND) experiment.

* Juan Rodriguez Carvajal (ILL) et al, http://www.ill.fr/sites/fullprof/
Fullprof suite

e Vaclav Petricek, Michal Dusek (Prague) Jana2006 http://
jana.fzu.cz/

* Wiestawa Sikora et al, http://www.ftj.agh.edu.pl/~sikora/modyopis.htm
program MODY

* Andrew S.Wills (UCL) http://www.ucl.ac.uk/chemistry/staff/

academic_pages/andrew_wills
program SARAh
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Magnetic neutron scattering on an atom

- S M, = —2upBSs
[i
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Magnetic neutron scattering on an atom

Magnetic field from an electron ~ H(R) = —rot + transl.part
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Magnetic neutron scattering on an atom

a o
%n = 294~ 5 M, = —2upS
n R c
/\
) R
Magnetic field from an electron ~ H(R) = —rot “TRP + transl.part
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Magnetic neutron scattering on an atom

o
Hyp = 2/%“715 S He — _ZMBé

Magnetic field from an electron ~ H(R) = —rot + transl.part

neutron-electron dipole interaction V(R) = —v,unoA'H(R)
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Magnetic neutron scattering on an atom

o
Hyp = 2/%“715 S He — _ZMBé

Magnetic field from an electron ~ H(R) = —rot + transl.part

neutron-electron dipole interaction V(R) = —v,unoA'H(R)

averaging over neutron <k"V(R)Lk> _ ’W‘e&

coordinates I’
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Magnetic neutron scattering on an atom

o
Hyp = 2/%“715 e S He — _ZMBé
X R
Magnetic field from an electron ~ H(R) = —rot “TRP + transl.part

neutron-electron dipole interaction V(R) = —v,unoA'H(R)

, ¢ ~ 1 A 1qr
oo KRl = e lax [
magnetic

interaction Q N
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Magnetic neutron scattering on an atom

“magnetic scattering amplitude” = YT¢ <QJ_> ’

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’|3



Magnetic neutron scattering on an atom
1. The size

“magnetic scattering amplitude” — YT¢ <QJ_> ]
62

neutron magnetic moment in U, -1.91 classical electron radius

mc?
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Magnetic neutron scattering on an atom
1. The size

“magnetic scattering amplitude” — YT¢ <QJ_> ]
62

neutron magnetic moment in U, -1.91 classical electron radius

mc?

yre=—0.54-10""2cm=—5.4fm(xS)

fm=fermi=10-'3cm
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Magnetic neutron scattering on an atom
1. The size

“magnetic scattering amplitude” — YT¢ <QJ_> ]
62

neutron magnetic moment in U, -1.91 classical electron radius

mc?

yre=—0.54-10""2cm=—5.4fm(xS)

fm=fermi=10-'3cm

x-ray scattering length: A
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Magnetic neutron scattering on an atom

1. The size

“magnetic scattering amplitude” — YT¢ <QJ_> ]

neutron magnetic moment in U, -1.91 classical electron radius

yre=—0.54-10""2cm=—5.4fm(xS)

fm=fermi=10-'3cm

Comparison of neutron scattering lengths (fm)

magnetic

Mn3* (S=2): /~10.8,\ Cu?* (S='%4): /-2.65
nuclear

Mn \-3.7,/ Cu; 7.7
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10° Neutron Intensity
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magnetic scattering intensity can be

larger than the nuclear one

magnetic
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Magnetic neutron scattering on an atom

“magnetic scattering amplitude” = YT'¢ <QJ_> )
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Magnetic neutron scattering on an atom

2. q-dependence
“magnetic scattering amplitude” = YT'¢ ;

q—]g[qXqu]
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Magnetic neutron scattering on an atom

2. q-dependence
“magnetic scattering amplitude” = YT'¢ ;
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Magnetic neutron scattering on an atom
2. q-dependence <
QJ_>7

“magnetic scattering amplitude” = YT’¢

Fourier image of the spin density in atom
or magnetic form-factor

<Q'> - <Z§i6iqri> S/drﬂs(r)eiqr = Sf(q)/

)
1 nuclear
0.8 \\
AN
= 0.6 AN Nji2*
— I
H\ 0.4 \ N\
Tiz"\ .
0.2 \ \\
N T
o) 1 2 3 4 ) 6 .7 ¢
o sin @
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Magnetic neutron scattering on an atom

“magnetic scattering amplitude” = YT'¢ <QJ_>

Q, =axQxq =[@xSxqlflqg
q=4a/q
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Magnetic neutron scattering on an atom

3. geometry

“magnetic scattering amplitude” = YT'¢ <QJ_>

Q. =dx Qx4 <q)
qa=4q/q

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3



Magnetic neutron scattering on an atom
3. geometry

“magnetic scattering amplitude” = YT'¢ <QJ_>

Q. =dx Qx4 <q)
qa=4q/q

Q.| = [S]sin(p)




Elastic scattering intensity

Neutron scattering cross-section
(for unpolarized neutron beam)

do

70 X |QJ_|2

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’|3



Elastic scattering on a lattice of spins

incoherent [ ~ <§2> =S(5+1) / f \ <0 \ &
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Elastic scattering on a lattice of spins

incoherent I~<§2> S(S +1) / f \ «o—\ &
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Elastic scattering on a lattice of spins

incoherent I~<§2> S(S +1) / f \ (—o—\ &

coherent Bragg scattering

I~|<S>Fig, //// //
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Magnetic structure
Examples
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Magnetic structure

Examples
kk=[0,0]
k=[0,0] AFM
FM A A oA A

I:I ¥ ¥ othceu‘( & 4
Oth cell

A A b4
¥ ¥ v

"4 "4 "4 P4 P4 4 p 4 p 4
V4 V4 ¥ ¥
So1 =S, + S, P01 =S+ 5y
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Examples of magnetic structures.
Propagation vector formalism k0

Magnetic moment S(tn) — l(Soe‘i_QWitnk + Sge—%itnk
is a real quantity 2

Fourie amplitude 1s complex o iba iby i
(one can not avoid this) So = Sze"" + 5,7 + 5z



Examples of magnetic structures.
Propagation vector formalism k0

: 1 : .
Magnetic moment  Q(t. ) = — SO€+2mtnk 4 SQfe-2mitnk
1s a real quantity (tn) 2 ( 0 ‘\) Bloch waves

Fourie amplitude 1s complex o iba iby i
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k=[1/2,1/2] AFM

S(t,) = S, sin(27t,, k)
= S, sin(m(tne + tny))
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(one can not avoid this)

So = S.e'" + 8,e'% + S, e

modulated (in)commensurate
Oth cell 4nelix

k=[0,0,k] | ==

ﬁ
J L4499«

Sg; =S, +S,e% =8, +iS,
0, = 2mit,k
S(tn) = Su cos(pn) + Sy sin(epn)



Examples of magnetic structures.
Propagation vector formalism k0

Magnetic moment S(t,) =

1s a real quantity

Fourie amplitude 1s complex
(one can not avoid this)

So

Soe—i—Qwitnk + S*6—27m'tnk
0

= S,e'%r £ 8, 4 S, e'?"

modulated (in)commensurate

Oth cell 4nelix
— v >

k=[0,0,k,] | = V4

| = ¥V ¥

~ YV g

— V

. =

So1 =S, +S,e? =8, +iS, Vo
0y, = 2mit, k cycloidal

S(t,) = S, cos(i2n) + S, sin(en) /splral

S()1 — S —|—ZSy —I—Sz6

|
l
|
T
t

l

[ o

SDW



Scattering from the lattice of spins.
Structure factor ¥(q)

In ND experiment we measure correlators of Fourier transform of magnetic lattice

7 <1f“<q> F(a) + P - [F(a) ¥ F*(q)]) - 6(H £ k — q)

I polarized neutron
structure factor (chiral) term.

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’|3



Scattering from the lattice of spins.
Structure factor ¥(q)

In ND experiment we measure correlators of Fourier transform of magnetic lattice

7 <1f“<q> F(a) +iP - [F(a) x F(a)) - 6(H £ k —q

I polarized neutron IBragg peak at
structure factor (chiral) term. q=HFk
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Scattering from the lattice of spins.
Structure factor ¥(q)

In ND experiment we measure correlators of Fourier transform of magnetic lattice

dO' * : %
—q < (F(a) - F'(q) +iP - [F(q) x F'(q)]) - 0(Hx k —q)
I I polarized neutron IBragg peak at
structure factor (chiral) term. q=HFk

Sum runs over all atoms in zeroth cell

—k = Z S jexp ZI'JQ) q)tr = Z S exp (ir;q)

Complex amplitude
of spin modulation
perpendicular to q

position of spin in
the zeroth cell

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’|3



Example of modulated structure
diffraction pattern

propagation vector k=[0.45,0,0]
. | . .

| | |
2.0 - TmMnO._, 35K ~
3 ﬁ v
| DMC, »=4.5A ‘o
i\
1.5 4 \/ 7] o
£ ' - o| 7
C ' ()
S v — — —
3 104 .1 O C S
. ~ — VA +
- S hed +2 M
5 — S o
o U “ — _
Z 1 | N v
< Em.. r.g"g; J ,. s'; ik?""'w«&:;:;:”-
o
- o f
| p—
| L -

20, (deg)
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Example of modulated structure and
single crystal diffraction

4-arms k-vector stars superstructure satellites
2 1

kit =11z

e} = {[z. . 1])

the mesh is for the parent 14/mmm cell
T=300K, (hk0) plane of CsyFe2.xSe>

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’|3 10
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single crystal diffraction

4-arms k-vector stars superstructure satellites
2 1

kit =11z

e} = {[z. . 1])

the mesh is for the parent 14/mmm cell
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Example of modulated structure and
single crystal diffraction

4-arms k-vector stars superstructure satellites

the mesh is for the parent 14/mmm cell
T=300K, (hk0) plane of CsyFe2.xSe>
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Example of complex magnetic structure

Antiferromagnetic three sub-lattice ordering in Tbi4Aus,

P6/m
k-vector=[1/3, 1/3, 0]

of Tb3*.
Conventional magnetic unit

cell contains 126 spins of
Tb3*!!




Example of complex magnetic structure

Antiferromagnetic three sub-lattice ordering in Tbi4Aus,

P6/m
k-vector=[1/3, 1/3, 0]

of Tb3*.
Conventional magnetic unit

cell contains 126 spins of
Tb3*!!

PHYSICAL REVIEW B 72, 134413 (2005)



Some legitimate questions

|. How do we describe/classify/predict magnetic
symmetries and structures!?

2. How do we construct all symmetry allowed magnetic
structures for a given crystal structure!?

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’|3
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Magnetic structure/symmetry seen by ND

Magnetic interactions are described by QM Hamiltonian with quantum spin operators
- . AN A /\2
H = — E JijSz’°Sj—|— E DZSZ—|—
1,9 1

In a diffraction experiment the problem is reduced and we observe only the spin
expectation values: <> averaging over all states (wave function ) of the scatterer.

S; — <§z> = S,.€, + Sy€Cy + S,€e, <<§z S2>

Magnetic structure that we observe by ND is an ordered set of classical axial
vectors §; — <§z> that can be directed at any angle with respect to crystal axes and

field.
In the representation symmetry analysis we deal with the classical spins transforming

as axial vectors under symmetry operations of space groups such as rotations,
inversion, etc.

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3

23



Atomic structure of any 3D crystal can be
described by one of 230 3D Space™* groups

T a
* E.S. Fedorov 1853 — 1919. g‘;ﬁgzrll\f]?;t?gﬁ — 1928
“Symmetry of regular “Kristallsysteme |

figures” (1890) Und Kristallstruktur” (1891)

V. Pomjakushin, Symmetry constraints in magneti




Basic crystallography (3 slides)

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’|3
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230 3D Space™ groups

Groups of transformations/motions of three dimensional
homogeneous discreet space into itself

Two kinds of

transformations/motions = 1. rotations (32 point groups) "
e.g: 4* 2. 4— — ] —4* - —4‘_—

2. lattice translations t = n1t1 + naty + nsts
(14 Bravias groups)

Space group ~ (semi)product point crystallographic group and Bravias group.

* E.S. Fedorov (1890) A.Schoenflies (1890)

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’|3



230 space groups. New symmetry elements

Product of 32 point crystallographic groups and 14 Bravias groups

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’|3
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230 space groups. New symmetry elements

Product of 32 point crystallographic groups and 14 Bravias groups

Screw axes or axes of screw rotations =
rotation + translation. e.g. 21, 31,32, ...

a, = 2nf[N, N =2, 3, 4, 6,

I, =

4 -
Nt’ g=1; 2; 3,4, 6.

~
—
~




230 space groups. New symmetry elements

Product of 32 point crystallographic groups and 14 Bravias groups

Screw axes or axes of screw rotations = G{zde-r eﬂectzgn planes = .
rotation + translation. e.g. 21, 31,32 mirror reflection m + translation by #/2,
” 9Ly oo a, b, " B

a, = 2n[N, N =2, 3, 4, 6,

[, = ;, d=1;2; 3,4,0

'3
N




International Tables

16
2h

P2/n2/m2/a

Pnma
No. 62

mmm Orthorhombic

Patterson symmetry Pmmm

OriginatTon 121

Asymmetric unit 0<x<i; 0<y<s: 0<z<1

Symmetry operations

(1)
(3)

(2) 2(0,0,4) 4,0,z
©6) a x1

(3) 2(0,4,0) 0,50

1
1 () m x,%.2

0,0,0

Generators selected (1); 7(1,0,0); 7(0,1,0); #(0,0,1); (2); (3); (5)

Positions
Multiplicity, Coordinates Reflection conditions
Wyckoff letter,
Site symmetry General:
8 d 1 (1) x,,2 (2) x+3,5,2+3 (3) %,y+3.2 4) x+3,5+35,2+3 Okl : k+1=2n
(5) %,¥,Z (6) x+ 3,97+ (7) x, ¥+ 1,2 (8) ¥+3,¥+3,2+3 hkO : h=2n
h00: h=2n
0kO: k=2n
00/ : I=2n
Special: as above, plus
4 ¢ .m X, 1.2 X4+3.7.2+7 X,1,2 X+3.1.2+3 no extra conditions
4 b 1 0,0,% 10,0 0,i,1 110 hkl : h4+1,k=2n
4 a 1 0,0,0 7,0,7 0,3,0 R hkl : h+1,k=2n

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3



International Tables

Schoenflies symbol
mmm

16
2h

P2/n2/m2/a

Pnma
No. 62

Orthorhombic

Patterson symmetry Pmmm

OriginatTon 121

Asymmetric unit 0<x<i, 0<y< 0<z<l1

1.
I
Symmetry operations

(1)
(3)

(2) 2(0,0,4) 4,0,z
©6) a x1

(3) 2(0,4,0) 0,50

1
1 () m x,%.2

0,0,0

Generators selected (1); 7(1,0,0); 7(0,1,0); #(0,0,1); (2); (3); (5)

Positions
Multiplicity, Coordinates Reflection conditions
Wyckoff letter,
Site symmetry General:
8 d 1 (1) x,,2 (2) x+3,5,2+3 (3) %,y+3.2 4) x+3,5+35,2+3 Okl : k+1=2n
(5) %,¥,Z (6) x+ 3,97+ (7) x, ¥+ 1,2 (8) ¥+3,¥+3,2+3 hkO : h=2n
h00: h=2n
0kO: k=2n
00/ : I=2n
Special: as above, plus
4 ¢ .m X, 1.2 X4+3.7.2+7 X,1,2 X+3.1.2+3 no extra conditions
4 b 1 0,0,% 10,0 0,i,1 110 hkl : h4+1,k=2n
4 a 1 0,0,0 7,0,7 0,3,0 R hkl : h+1,k=2n

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3



International Tables

761 Schoentlies symbol
P nmdad ol mmm

No. 62 P2/n2/m2/a

Hermann—Mauguin, short

Orthorhombic

Patterson symmetry Pmmm

Hermann—Mauguin
OriginatTon 121

0<z<1

Asymmetric unit 0<x<i; 0<y<q: <z<

Symmetry operations

(1) 1 (2) 2(0,0,3) 1,0,z (3) 2(0,4,0) 0,y,0 4) 2(2,0,0) x4,
(5) 1 0,0,0 (6) a x,y,1 () m x,%.2 (8) n(0,3,3) %2
Generators selected (1); 7(1,0,0); 7(0,1,0); #(0,0,1); (2); (3); (5)
Positions
Multiplicity, Coordinates Reflection conditions
Wyckoff letter,
Site symmetry General:
8 d 1 (1) x,,2 (2) X+3,5,2+3 (3) %,y +4%.2 (4) x+35,5+3,7+3 Okl : k+1=2n
(5) £,5,2 LT+ Dxy+42 ) T+5y+42+4 hkO : h=2n
h00: h=2n
0kO: k=2n
00/ : I=2n
Special: as above, plus
4 ¢ .m X, 1.2 X+%3.7.2+1 X,1,2 X+3,7.2+3 no extra conditions
4 b 1 0,0,% 10,0 0,i,1 110 hkl : h+1,k=2n
4 a 1 0,0,0 7,0,7 0,3,0 R hkl : h+1,k=2n
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International Tables

Schoenflies symbol
mmm

Hermann—Mauguin, short

Pnma
No. 62

16
2h

P2/n2/m2/a

Orthorhombic

Patterson symmetry Pmmm

Hermann—Mauguin
OriginatTon 121

0<x<i; 0<z<1

Asymmetric unit 0<y<gz 0<

Symmetry operations

(1)
(3)

(2) 2(0,0,4) 1,0,z
©6) a x4

(3) 2(0,4,0) 0,5,0

1
1 (7)y m x,%,z2

2| zeroth block of SG

0,0,0

Generators selected (1); 7(1,0,0); 7(0,1,0); #(0,0,1); (2); (3); (5)

Positions
Multiplicity, Coordinates Reflection conditions
Wyckoff letter,
Site symmetry General:
8 d 1 (1) x,»z (2) X+3,5,2+3 (3) X, y+3.2 4) x+3.5+3,2+3 Okl : k+1=2n
(5) x,¥,2 6) x+35,%.2+1 (7) x,§+ 1.2 (8) X+ 4, y+4,2+13 hkO : h=2n
h00: h=2n
0kO: k=2n
00/ : I=2n
Special: as above, plus
4 ¢ .m X, 1,2 ¥+1,1,2+1 %,1,2 x+3.1,243 no extra conditions
4 b 1 0,0,% 10,0 0,i,1 110 hkl : h+1,k=2n
4 a 1 0,0,0 7,0,7 0,3,0 R hkl : h+1,k=2n

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3



International Tables

761 Schoentlies symbol
Pnma o mmm Orthorhombic

No. 62 P 21 / n 2] / m 21 / da Patterson symmetry Pmmm

Hermann—Mauguin

Hermann—Mauguin, short

OriginatTon 121
Asymmetric unit 0<x<s: 0<y<i: 0<z<I

Symmetry operations

(1) (2) 2(0,0,3) 1,0,z (3) 2(0,1,0) 0,0 (4) 2(4,0,0) x,%4
(5) 1 0,0,0 6) a x,y1 (7) m x,},z ®) n(0,4,3) vz | zeroth block of SG

1
1

Generators selected (1); 7(1,0,0); 7(0,1,0); #(0,0,1); (2); (3); (5)

Positions
Multiplicity, Coordinates Reflection conditions
Wyckoff letter,
Site symmetry —~ .
. | general pOSlthIl:
8 d 1 (1) x,y,z (2) 2+3,7,2+3 (3) x,y+3.2 4) x+3.5+35,2+3 . . lati
(5) %.9.7 6) x+1,y,74 1 (7) x,5+ 1,2 ®) f+Ly+iz+1 | rotation matrix + translation
LhlTh}
00/ : I=2n
Special: as above, plus
4 ¢ .m. X, 1.2 X4+3.7.2+7 X,1,2 X+3,7.2+3 no extra conditions
4 b 1 0,0,% 10,0 0,i,1 110 hkl : h+1,k=2n
4 a 1 0,0,0 50,3 0.3,0 3. 5.3 hkl : h+1.k=2n

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3



Two ways of description of magnetic
structures

Magnetic structure 1s an axial vector function S(r) defined on the discreet
system of points (atoms), €.g. S(r) =s(r1) @ s(r2) ® s(r3) @ s(rs)

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Two ways of description of magnetic
structures

Magnetic structure 1s an axial vector function S(r) defined on the discreet
system of points (atoms), €.g. S(r) =s(r1) @ s(r2) ® s(r3) @ s(rs)

"y

N() \ /AD\
{‘A%%V 1. gS(r) = S(r) to 1tself, where g € subgroup of
&&N“k SG®1’°, I’=spin/time reversal, SG (space group)

or

2. gS(r) = S’(r) to different function defined on the
same system of points, g& SG

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3



) = S(r) to itself, Tz antytsp of description of magnetic
91°, 1’=spin reversal, SG (space group)
structures

r) = S’°(r) to different function defined on the
e system of points, g€ SG

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’|3
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Two ways of description of magnetic
e G structures

or

2. gS(r) = S’(r) to different function defined on the
same system of points, g€ SG

1. Magnetic or Shubnikov groups MSG. Historically the first

way of description. A group that leaves S(r) invariant under a
subgroup of G®1°. Identifying those symmetry elements that

leave S(r) invariant.

Similar to the space groups (SG 230). The MSG symbol looks
similar to SG one, e.g. [4/m’

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Two ways of description of magnetic

1.gS(r)=S itself, wh b f .
R P structures MG Example:
87.1.733 14/m

or

2. gS(r) = S’(r) to different function defined on the 87.2.734 14/m1'
same system of points, g€ SG o

87.3.735 14'/m
1. Magnetic or Shubnikov groups MSG. Historically the first

way of description. A group that leaves S(r) invariant under a 87.4.736  l4/m’

subgroup of G®1°. Identifying those symmetry elements that 875737  14'/m
leave S(r) invariant.

Similar to the space groups (SG 230). The MSG symbol looks 87.6.738  l,4/m
similar to SG one, e.g. [4/m’ 87.7.739 I 4'm

87.8.740 I, 4/m’

87.9.741 I, 4'/m’

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3



Two ways of description of magnetic

1.gS(r)=S itself, wh b f .
R P structures MG Example:
87.1.733 14/m

or

2. gS(r) = S’(r) to different function defined on the 87.2.734 14/m1'
same system of points, g€ SG o

87.3.735 14'/m
1. Magnetic or Shubnikov groups MSG. Historically the first

way of description. A group that leaves S(r) invariant under a 87.4.736  l4/m’

subgroup of G®1°. Identifying those symmetry elements that 875737  14'/m

leave S(r) invariant.

Similar to the space groups (SG 230). The MSG symbol looks 87.6.738  l,4/m

similar to SG one, e.g. [4/m’ 87.7.739 I 4'm
2. Representation analysis. How does S(r) transform 87.8.740 Il 4/m'

under g € G (space group)? 879741  |4'm

S(r) is transformed to Sig r) under g € G according to a

single irreducible representation™ t; of G. Identifying/
classifying all the functions S'(r) that appears under all
symmetry operators of the space group G

*each group element g --> matrix 1(g)

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3



Two ways of description of magnetic
structures

1. gS(r) = S(r) to itself, where g € subgroup of
SG®1°, 1’=spin reversal, SG (space group)

or

2. gS(r) = S’(r) to different function defined on the
same system of points, g€ SG

1. Magnetic or Shubnikov groups MSG. Historically the first

way of description. A group that leaves S(r) invariant under a

subgroup of G®1°. Identifying those symmetry elements that

leave S(r) invariant.

Similar to the space groups (SG 230). The MSG symbol looks

similar to SG one, e.g. [4/m’

2. Representation analysis. How does S(r) transform
under g € G (space group)?

S(r) is transformed to Sig r) under g € G according to a

single irreducible representation® t; of G. Identifying/
classifying all the functions S'(r) that appears under all

14/m, k=0 has 8 1D irreps 11,... 1.

MSG Example:
87.1.733 14/m
87.2.734 14/m1'
87.3.735 14'/m
87.4.736 14/m'
87.5.737 14'/m'’
87.6.738 l-4/m
87.7.739 l-4'/m
87.8.740 I, 4/m'
87.9.741 l-4'/m

irrep Example:

symmetry operators of the space group G
h 1

hs

/14

-

/I|5

has
—1

/I_;x

. T 1

*each group element g --> matrix 1(g) 5 l
T3 |

Ts I

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3 T |
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Magnetic space groups and representation
analysis: competing or friendly concepts?

In 1960th-70th often opposed

E.F.Bertaut, CNRS, Grenoble W.Opechovski, UBC, Vancouver
Representation Analysis Shubnikov magnetic space groups

Nowdays

(Representation Analysis) and (Magnetic space groups) are complementary
and 1n case k=0 or commensurate (e.g 1/2) provide identical description of
magnetic symmetry.

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’|3
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Magnetic symmetry. 1651 3D-Shubnikov (Sh
or L) space groups

14 Bravias lattice

32 point groups

~N 7

230 space groups (SQ)

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3

antisymmetry: Heesh (1929), Shubnikov (1945).

groups: Zamorzaev (1953, 1957); Belov, Neronova,

Smirnova (1955)
spin reversal: Landau and Lifschitz (1957)

32



Magnetic symmetry. 1651 3D-Shubnikov (Sh
or L) space groups

14 Bravias lattice | |32 point groups

~N 7 an additional element: R(E)= X
230 space groups (SQ) spin reversal operator R or color change. | =
R-group (1,R) R(®©)=B
R(T)=]

antisymmetry: Heesh (1929), Shubnikov (1945).
groups: Zamorzaev (1953, 1957); Belov, Neronova,
Smirnova (1955)

spin reversal: Landau and Lifschitz (1957) 32
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Magnetic symmetry. 1651 3D-Shubnikov (Sh
or L) space groups

14 Bravias lattice | |32 point groups

~N 7 an additional element: R(E)= X
230 space groups (SQ) spin reversal operator R or color change. | =
R-group (1,R) R(®©)=B
l — R(1)=1

Magnetic Groups = (subgroup of)
space group G ® R-group

antisymmetry: Heesh (1929), Shubnikov (1945).
groups: Zamorzaev (1953, 1957); Belov, Neronova,
Smirnova (1955)

spin reversal: Landau and Lifschitz (1957) 32
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Magnetic symmetry. 1651 3D-Shubnikov (Sh
or L) space groups

14 Bravias lattice | |32 point groups

~N 7 an additional element: R(E)= X
230 space groups (SQ) spin reversal operator R or color change. | =
R-group (1,R) R(O©)=B
l — R(1)=

Magnetic Groups = (subgroup of)
space group G ® R-group

additional elements:
‘anti-elements’ g’=(g'R), geG

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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29 [V X r]??

antisymmetry: Heesh (1929), Shubnikov (1945).
groups: Zamorzaev (1953, 1957); Belov, Neronova,
Smirnova (1955)

spin reversal: Landau and Lifschitz (1957) 32



Magnetic symmetry. 1651 3D-Shubnikov (Sh
or L) space groups

14 Bravias lattice | |32 point groups

~N 7 an additional element: R(E)= X
230 space groups (SQ) spin reversal operator R or color change. | =
R-group (1,R) R(O©)=B
l — R(1)=

Magnetic Groups = (subgroup of)
space group G ® R-group

additional elements:
‘anti-elements’ g’=(g'R), geG

|

y N

1,1’ Shy, = S=0, e.g. Pnmal’

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3

2 2.)
230 (gray) paramagnetic groups Shy, ' / / y/ /
e
S =

- — | —>

29 [V X r]??

antisymmetry: Heesh (1929), Shubnikov (1945).
groups: Zamorzaev (1953, 1957); Belov, Neronova,
Smirnova (1955)

spin reversal: Landau and Lifschitz (1957) 32



Magnetic symmetry. 1651 3D-Shubnikov (Sh
or L) space groups

14 Bravias lattice | |32 point groups

~N
230 space groups (SQ)

|

an additional element:

spin reversal operator R or color change. =

R-group (1,R)

R(E)=X
R(© )=

Magnetic Groups = (subgroup of)
space group G ® R-group

|

230 (gray) paramagnetic groups Shy,
1,1’ Shy, = S=0, e.g. Pnmal’

/

230 Single-color magnetic groups
no antieclements

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3

R(D =1

additional elements:
‘anti-elements’ g’=(g'R), geG

Y N
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29 [V X r]??

antisymmetry: Heesh (1929), Shubnikov (1945).
groups: Zamorzaev (1953, 1957); Belov, Neronova,
Smirnova (1955)

spin reversal: Landau and Lifschitz (1957) 32



Magnetic symmetry. 1651 3D-Shubnikov (Sh

or L) space groups

14 Bravias lattice | |32 point groups

~N 7

an additional element:

230 space groups (SQ) spin reversal operator R or color change.

|

R-group (1,R)

/

R(E)=X

R(© )=
R(MD=1|

space group G ® R-group

Magnetic Groups = (subgroup of)

additional elements:
‘anti-elements’ g’=(g'R), geG

|

N

230 (gray) paramagne

1,1’ Shy, = S=0, e.g. Pnmal’

N

p) ’
tic groups Sh, ’ / / 2y / /

/

. S T

— | =
-|77

=

230 Single-color magnetic groups
no antieclements

1191 black/white magnetic groups that contain
additional ‘anti-elements’ g’=(g'R) except g=1

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3

(identity). No primed 1’

=

antisymmetry: Heesh (1929), Shubnikov (1945).
groups: Zamorzaev (1953, 1957); Belov, Neronova,

Smirnova (1955)

spin reversal: Landau and Lifschitz (1957) 32



Examples of Sh groups

59 Pmmn 62 Pnma
Pm’ mn Pn’ma
Pmmn’ Pnm’a

*Pm’'m’n Pnma’
*Pmm’n’ *Pn’'m’a
Pm’'m’n’ *Pum’a’
P; .mmn *Pn'ma’
Py, .m’mn
P,.m'm’n Pn'm’a’
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Examples of Sh groups

59 Pmmn 62 Pnma
Pm’mn Pn’ma . .
, Ferromagnetic groups: point
Pmmn Pnm’a
D s symmetry allows FM
Pm’m’n Pnma’ : : :
- orientation of spins
*Pmm’n

*Pn'm’a <«—_  Only 275 FM groups out of

Pm’m’n *Pnm’a’ o+ 1651..

P, .mmn
2¢ * ’ ’
P, .m'mn Pn’ma
/ ? n?
Py, m'm’n Pn’'m’a
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Examples of Sh groups

59 Pmmn 62 Pnma
Pm’mn Pn’ma . .
, Ferromagnetic groups: point
Pmmn Pnm’a
D s symmetry allows FM
Pm’m’n Pnma’ : : :
- orientation of spins
*Pmm’n

*Pn'm’a <«—_  Only 275 FM groups out of

Pm’'m’n *an’a’/ 1651...

Py, .mmn
chm’mn *Pn’'ma’
.
chm’m'n Pn’m’a'
X ,
recap: 4
for ‘anti-elements’ g’=(g'R), geG
g can be a pure translation ¢, so ¢’
gives centering/doubling
-y

X

PZC = Pa,b,ZC

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’|3 t =c= (O 0 1)
Q 1My



Example of Shubnikov group. Magnetic structure

of Iron based superconductor Kf¥eSe
1[4/m, k=0 has 8 1D irreps 11,... Ts.

4 real irreps  <--> Shubnikov groups of /4/m One unit cell with Fe
4 complex irreps
/11 /I]4 /14 /115 1135 /I_;g /133 /I_u) i \.' """"""""""""""""""""" ----------------- >
. T | 4* 2 4_ —1 —4* m-. —4_ vacancy
. e S ¢
o m ] L -1 -1 -1 -1 ; ;; ®
T 1 i —1 —i 1 i =1 —i 5 “ ;@
Ts 1 1 1 —1 -1 1 —1 : ; §
T 1 —i -1 i l —i -1 i : 5 §
8 unique Fe \ E
e s .
.5 “ . ©
s S G
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Example of Shubnikov group. Magnetic structure

of Iron based superconductor Kf¥eSe
1[4/m, k=0 has 8 1D irreps 11,... Ts.

4 real irreps  <--> Shubnikov groups of /4/m One unit cell with Fe
4 complex irreps
/11 /I|4 /14 1115 1135 /I_;x /133 /I_w i \.' """"""""""""""""""""" ----------------- >
. T 1 4* 2 4 — 1 —47 m —4- vacancy
f E ¢
O I4/m° ] l l l — 1 —1 —1 — 1 ‘5 . @
73 1 i -1 = 1 i -1 —i ; © . ©
Ts N L 1 =1 1 =1 ; ; §
a L - - i I g ; :’
8 unique Fe \ E
e .
¢ j QO
.5 “ . ©
s S G
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“Pisadvantages- Specifics of Shubnikov Sh-

group description
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“Pisadvantages- Specifics of Shubnikov Sh-
group description

Specifics 1: Sh group that describes the magnetic
structure 1s not necessarily made from the parent G.
Thus, it is not an ultimately practical...
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“Pisadvantages- Specifics of Shubnikov Sh-
group description

Specifics 1: Sh group that describes the magnetic
structure 1s not necessarily made from the parent G.
Thus, it is not an ultimately practical...

Example 1:

there are no cubic ferromagnetic Sh-groups. “problems”
with cubic ferromagnets Fe, N1, EuO, Eus, ...

One can find lower symmetry ferromagnetic group, e.g.
tetragonal Sh-group [4/mm’m’ for Fe (Im-3m)
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“Pisadvantages- Specifics of Shubnikov Sh-
group description

Specifics 1: Sh group that describes the magnetic
structure 1s not necessarily made from the parent G.
Thus, it is not an ultimately practical...

Example 1:

there are no cubic ferromagnetic Sh-groups. “problems”
with cubic ferromagnets Fe, N1, EuO, Eus, ...

One can find lower symmetry ferromagnetic group, e.g.
tetragonal Sh-group [4/mm’m’ for Fe (Im-3m)

Example 2:

CrCl, orthorhombic space group: Pnnm.

No S% group derived from Pnnm describes CrCl
magnetic structure

Cr-atoms 1n 2a-position
k=[0 1/2 1/2]

( """
o O
’ ;9& One can still find less
)?' symmetric Sh group triclinic
' .u () | Sh7,=Pasl;
VP 9 _*? PSI'13
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“Pisadvantages- Specifics of Shubnikov Sh-

group description

Specifics 1. Sh group that describes the magnetic Specifics 2: 3D Sh do not describe modulated
structure 1s not necessarily made from the parent G. structures.
Thus, it is not an ultimately practical... * No rotations on non-crystallographic angle - no helix
* Linear orthogonal transformations preserve the spm
Example 1: size - no SDW -

there are no cubic ferromagnetic Sh-groups. “problems” .
with cubic ferromagnets Fe, N1, EuO, Eus, ... =g
One can find lower symmetry ferromagnetic group, e.g.

v <z
V. ¢
tetragonal Sh-group I4/mm’'m’ for Fe (Im-3m) YV @ f
Example 2: o ﬁ « o
CrCl, orthorhombic space group: Pnnm. —= SN L —
No Sh group derived from Pnnm describes CrCly = W | RN
magnetic structure >
Cr-atoms 1n 2a-position -
k=[01/2 1/2]
[ < o
o\ O .
’ ;9& One can still find less
)?' symmetric Sh group triclinic
| .u* (M | Sh7,=Pl;
VP 9 . a PSI'13
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“Pisadvantages- Specifics of Shubnikov Sh-

group description

Specifics 1. Sh group that describes the magnetic Specifics 2: 3D Sh do not describe modulated

structure 1s not necessarily made from the parent G. structures.

Thus, it is not an ultimately practical... * No rotations on non-crystallographic angle - no helix

* Linear orthogonal transformations preserve the spm

E ) size - no SDW -

xample 1: .
there are no cubic ferromagnetic Sh-groups. “problems” @ v ~ ! '—*
with cubic ferromagnets Fe, N1, EuO, Eus, ... C= @ V4 | -
One can find lower symmetry ferromagnetic group, e.g. 4 Problem is ;lve d 1n 3D+
tetragonal Sh-group [4/mm’m’ for Fe (Im-3m) | (3D+n) superspace
Example 2: h crystallographic magnetic-
CrCl, orthorhombic space group: Pnnm. ~| group.
No Sh group derived from Pnnm describes CrCl = W e | RN
magnetic structure e | .
Cr-atoms 1n 2a-position -
k=[0 1/2 1/2] ’

o )
) ;9& One can still find less
)?‘ symmetric Sh group triclinic
> e o' (D[ oy Sh27Paul;
VP 9 _*? PSI'13
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Introduction to representation theory with
relatively simple example of magnetic
representation. Classification of magnetic
structures by irreducible representations irreps
of group

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’|3
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Why irreducible representations of space group
iS so important for magnetic structure?

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’|3
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Symmetry in QM

H(r), r = (r1, 12, 13, ... ) , vector space with dimension n
w(r) arbitrary wave function
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Symmetry in QM

H(r), r = (r1, 12, 13, ... ) , vector space with dimension n
w(r) arbitrary wave function

G - group of coordinate transformation, T(Ga.) - induced transformations in y-space

T(Ga)p(r) = ¢'(r) = (G, 'r)
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Symmetry in QM

H(r), r = (r1, 12, 13, ... ) , vector space with dimension n
w(r) arbitrary wave function

G - group of coordinate transformation, T(Ga.) - induced transformations in y-space

T(Ga)y(r) = ¢'(r) = (G, 'r)
T(G)HT YG,) = H' if H=H’: G is called symmetry group of the Hamiltonian
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Symmetry in QM

H(r), r = (r1, 12, 13, ... ) , vector space with dimension n
w(r) arbitrary wave function

G - group of coordinate transformation, T(Ga.) - induced transformations in y-space

T(Ga)y(r) = ¢'(r) = (G, 'r)
T(G)HT YG,) = H' if H=H’: G is called symmetry group of the Hamiltonian

eigenvalues/functions
Hy.=Eyw, =E v w2, .. yh
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Symmetry in QM

H(r), r = (r1, 12, 13, ... ) , vector space with dimension n
w(r) arbitrary wave function

G - group of coordinate transformation, T(Ga.) - induced transformations in y-space

T(Ga)p(r) = ¢'(r) = (G, 'r)

T(G)HT YG,) = H' if H=H’: G is called symmetry group of the Hamiltonian

eigenvalues/functions
Hy.=Eyw, =E v w2, .. yh

For example:

* Crystal field splitting
* Molecular vibrations
' 1| 01 0| O *Phonons

N .
11 ol o Magnetic structure

E,, w," can be classified by irreps 7;* '
degeneracy /, 1s > dimension of ;" .

Z 0 |7y

; . 174

Irep :Z@ IITCPS: TZ] p— n’/T’L'] O O Tijz O ... C.V.
D ololo

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Example: point group 32

Point group Hermann—Mauguin symbol 32 (D3 Schoenflies symbol)
e.g Quartz

or regular triangle

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Multiplication table, isomorphism

Point group 32 (D3 Schoenflies symbol)

e.g regular triangle

6 symmetry elements (rotations):

RO=E, Ri=2n/3, Ro=4n/3 around z, R3, R4, Rs, = m around resp.

hex —> 1 31 32 20 2y 2, axes in xy-plane

Uhex

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Multiplication table, isomorphism

Point group 32 (D3 Schoenflies symbol)
e.g regular triangle

6 symmetry elements (rotations):

Itiplication tabl
RO=E, R1=2n/3, R2=4n/3 around z, R3, R4, Rs, = 7 around resp. multiplication table

hex —> 1 31 32 20 2y 2, axes in xy-plane 81 g2 cas Za
gl g‘i‘ glg‘;} P glgn
g2 | 8281 &, 828,

Uhex
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Multiplication table, isomorphism

Point group 32 (D3 Schoenflies symbol)
e.g regular triangle

6 symmetry elements (rotations):

Itiplication tabl
RO=E, Ri=2n/3, R,=4n/3 around z, R3, R4, Rs5, = m around resp. multiplication table

hex —> 1 31 32 20 2, 2, Aaxes in xy-plane 81 g2 cas Za
g1 | g7 &8 ... 48,
g2 | 2281 & 828,

/ Xhe) - . . -

r 3 , . .
! // o 3
ol R’ 2 3 = / Y/ gn g-ngl gnb2 gn

Uhex
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Multiplication table, isomorphism

Point group 32 (D3 Schoenflies symbol)
e.g regular triangle

6 symmetry elements (rotations):

RO=E, R1=2n/3, Ro=4n/3 around z, R3, R4, Rs, = m around resp. axes in xy-plane

hex —> 1 31 32

211 2y 2x
hex —> 1 31 32 2u 2y 2x
Gb

E R, R, R, Ry R

E E Ry R R4 R, R

Ry Ry Ro E R4 R Rs

R‘Z R2 E Rl R5 R3 R4

R3 R3 Rr) R-l E R2 R]_

R, R, R Ry E Ry

R R; Ry R, R R; E

Uhex

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Multiplication table, isomorphism

Point group 32 (D3 Schoenflies symbol)
e.g regular triangle

6 symmetry elements (rotations):
RO=E, R1=2n/3, Ro=4n/3 around z, R3, R4, Rs, = m around resp. axes in xy-plane

hex —> 1 31 32 2u 2y 24
hex —> 1 31 32 2u 2y 2X
S |

/ Xhe \ - . ° e R, Rg

% ?
£ Ry  Rs
A £
\\\\\ R1 .~( “ Ry R3
= R 2/ _,.J R3 R4
Rs3 — 1T ~ Ry R1
Ry E Ry

3m
RF. I 3‘20 ! ng "2 Rl E

Uhex Two groups are isomorphous if they have the same multiplication table
Quartz 32 D3

Ammonia molecule 3m Cs,

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Group representations:

If we can find a set of square matrices (in general

linear operators) T(ga) in a vector space L, which

formal definition

multiplication table

correspond to the elements g, of group G and have the g4
same multiplication table, i.e. T(ga) T(gb)= T(ga 2b)

then this set of matrices is said to form a matrix

‘representation’ of the group G 1n space L.

\

n matrices /x[. n 1s order of G

(th t th
t21 t22 t23

g
\tll tl2 tl3

th/

; T(g2) —

lgl ) gn

g1 8182 818,

g2 | 2261 & 828,

g | 8a8r En8 fn
2 2 2 2
/tél t%Q tég t%l\
t21 t22 t23 t2l

7T(93)_
2 2 2 2
\tll tlQ tlS tll

Dimension of representation 1s equal to the
dimension of the vector space

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Linear vector spaces

3-dimensional space of
. . S — Sj ej
particle displacement (or e S
magnetic moment) J=x,Y,% Z
Cy
0 ex

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Linear vector spaces

3-dimensional space of
. . S — Sj ej
particle displacement (or e S
magnetic moment) J=x,Y,% Z
0 ex

3N-dimensional space of all

possible displacements (or ( Szl \
magnetic moments) Sy1
Function y 1s defined on N S»1
discreet points S0
N 5y2
_ "y S22

Y=Y Y Sinejn
n=1j1=x,y,z

SxN
SyN

\52)

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Induced representation of group in
“magnetic” linear space.

To construct the representation one has to know the rules of
transformations of the vector in LS under group symmetry elements.

3N-dimensional space of
magnetic moments defined on
N discreet points

N
b=, D Sin€n

n=1j=z,y,z

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’|3

=

Sz
Syl

3N by 3N matrices given by group
transformations different y-vectors
form a magnetic representation of

group.

We split the problem:

44



Induced representation of group in
“magnetic” linear space.

To construct the representation one has to know the rules of
transformations of the vector in LS under group symmetry elements.

3N-dimensional space of
magnetic moments defined on
N discreet points

N
b=, D Sin€n

n=1j=z,y,z

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3

=

Sz
Syl

3N by 3N matrices given by group
transformations different y-vectors
form a magnetic representation of

group.

We split the problem:

1. 3D space of spin rotations
2. N-dimentional space of positions/sites

44



Point groups. Classical spin rotations in 3D

3-dimensional vector space of S = E S;€;

classical spin j=x,y,2

Rotation matrices can be used to construct 3-
dimensional representation matrices of proper
rotations

cospy —siny 0

v, | sinp cosp O
0 0 1

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’|3
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Point groups. Classical spin rotations in 3D space

3-dimensional vector space of S = E S;€;
classical spin JE— ey
Cy
0 ex
Rotation matrices can be used to construct 3- For improper rotations such as inversion
dimensional representation matrices of proper (I) or mirror plane we should remember
rotations that spin 1s an axial vector.
S — 29 [V X r] 29
. Z
cosep —singp 0 A -
v, | sinp cosp O IS =S

o0 mz=2J/ /

—>

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Point groups. Classical spin rotations in 3D space

3-dimensional vector space of S = E S;€;
classical spin JE— ey
Cy
0 ex
Rotation matrices can be used to construct 3- For improper rotations such as inversion
dimensional representation matrices of proper (I) or mirror plane we should remember
rotations that spin 1s an axial vector.
S ="[v x|’
. Z
cospy —siny 0 A

v, | sinp cosp O IS =S

o0 mz=2J/ /

2(—-—)

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3

45



Point groups. Classical spin rotations in 3D space

3-dimensional vector space of S = E S;€;
classical spin JE— ey
Cy
0 ey
Rotation matrices can be used to construct 3- For improper rotations such as inversion
dimensional representation matrices of proper (I) or mirror plane we should remember
rotations that spin 1s an axial vector.
. S="[vxr)’
cosp —singp 0 A2 mz=2,l _
v, | sinp cosp O IS =S

<
o mz=zzT/ /
—>

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Induced representation of Point group 32 in
3D rotation space of spin S

6 symmetry elements (rotations):
RO=E, R1=2n/3, Ro=4n/3 around z, R3, R4, Rs, = m around resp. axes in xy-plane

cosp —siny 0
0, | sinp cosp 0

0 0 1

|

I

:

f

I

|

1. 3-dimensional representation }
|

¢

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Induced representation of Point group 32 in
3D rotation space of spin S

6 symmetry elements (rotations): Y S
RO=E, R1=2n/3, Ro=4n/3 around z, R3, R4, Rs, = m around resp. axes in xy-plane

cospy —singp 0 "\‘\\ /

0, | sinp cosp 0
0 0 1

|

I

:

f

I

|

1. 3-dimensional representation }
|

¢

. — T -+ J3 0 -1 0 O
TR)=| /2 -3 0] TRI=§ —-/3 -3 0 ) TRy)=[ o1 o
0 0 1 0 0 1 0 0 —1 etc
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Induced representation of Point group 32 in
3D rotation space of spin S

6 symmetry elements (rotations): /
RO=E, R1=2n/3, Ro=4n/3 around z, R3, R4, Rs, = m around resp. axes in xy-plane

cospy —singp 0 "\‘\\ /

0, | sinp cosp 0
0 0 1

|

I

:

f

I

|

1. 3-dimensional representation }
|

¢

. — T -+ J3 0 -1 0 O
TR)=| /2 -3 0] TRI=§ —-/3 -3 0 ) TRy)=[ o1 o
0 0 1 0 0 1 0 0 —1 .. etc

2. By taking the one dimensional space of vector €, alone we may generate
very simple one-dimensional representation

TOR,) =1, T?R,) =1, TPR,) = —1, TR, = —1,
TR, = —1, T?(E) = I

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3

46



Representation in sites space
for point group 32

¥
6 symmetry elements (rotations): %)
RO=E, R1=2n/3, R,=47/3 around z, R3, R4, Rs, = w around resp. axes in xy-plar b

Let us assume we have 3 atoms/spins a, b, ¢ in S / \

the sites 1,2,3 e
3-dimensional linear space of atom/spin sites. / NN —E
Note, not the 3D xyz, but labeled sites. a9 7 . C
|
1 : 3
|
{

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3 47



Representation in sites space
for point group 32

¥
6 symmetry elements (rotations): %)
RO=E, R1=2n/3, R,=47/3 around z, R3, R4, Rs, = w around resp. axes in xy-plar b

o - R\
Let us assume we have 3 atoms/spins a, b, ¢ in TS / \ ,1/"

the sites 1,2,3 ~_ |
3-dimensional linear space of atom/spin sites. / NN —E
Note, not the 3D xyz, but labeled sites. a9 7 . C
|
1 : 3
|
{

‘origin
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Representation in sites space
for point group 32

¥
6 symmetry elements (rotations): %)
RO=E, R1=2n/3, R,=47/3 around z, R3, R4, Rs, = w around resp. axes in xy-plar b

the sites 1,2,3 e
3-dimensional linear space of atom/spin sites. / TSN —
Note, not the 3D xyz, but labeled sites. a -

Let us assume we have 3 atoms/spins a, b, ¢ in S / \

clement R permutes |

the atoms

b=a
c=Db
a=_cC
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Representation in sites space
for point group 32

¥
6 symmetry elements (rotations): %)
RO=E, R1=2n/3, R,=47/3 around z, R3, R4, Rs, = w around resp. axes in xy-plar b

Let us assume we have 3 atoms/spins a, b, ¢ in S / \

the sites 1,2,3 S~
3-dimensional linear space of atom/spin sites. / NN e
Note, not the 3D xyz, but labeled sites. a -~ | o C
|
1 : 3
|
{ .
element R; permutes ‘
the atoms 5D
b=a a
c=b b
a=>¢ :
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Representation in sites space
for point group 32

¥
6 symmetry elements (rotations): %)
RO=E, R1=2n/3, R,=47/3 around z, R3, R4, Rs, = w around resp. axes in xy-plar b

Let us assume we have 3 atoms/spins a, b, ¢ in S / \

the sites 1,2,3 S~
3-dimensional linear space of atom/spin sites. / NN e
Note, not the 3D xyz, but labeled sites. a -~ | o C
|
1 : 3
|
{ .
element R; permutes ‘
the atoms 5D
b=a 01 0] [ a b
c=b 0 0 1 b | =] c
a=¢C | 1 0 0 | C a
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Representation in sites space
for point group 32

6 symmetry elements (rotations): %)
RO=E, R;=2n/3, Ro=4n/3 around z, R3, R4, Rs, = m around resp. axes in xy-plar

Let us assume we have 3 atoms/spins a, b, ¢ in S / \

the sites 1,2,3 S~
3-dimensional linear space of atom/spin sites. / e —
Note, not the 3D xyz, but labeled sites. a -~ | ~C
|
1 : 3
|
{ .
element R; permutes ‘
the atoms 5D
b=a 01 0] [ a b
c=b 0 0 1 b | =] c
a=¢C | 1 0 0 | C a

permutation (n=3) representation of group 32

o o]J][o 1 o]J][Oo o 110 1 0 0 0
0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1
0 1]|1 000 1O0||[0O01 1 0

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3 47



Product of two representations of group

U1V ULVt Upalig Uyl
- . . - U121 UL 1U22 U1 2Uz21 U 2U22
up 1 Vooug oV '
Direct (tensor) matrix product U@V = |21V u22V =
: : Uz 1U11 U21U12
L . U 1U21 U122
dimension m n

gives a new rep with dimension mxn
and new vector space!

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Product of two representations of group

u 11V ou eV
Direct (tensor) matrix product UV = |u21V ug2V

dimension m

permutation (n=3) representation of group 32

0 1 0 0 0 1 0 1 O 0
0 0 1 1 0 0 1 0 O 0
1 0 O 0 1 0 0 0 1 1

(N
o = O
= O O
o = O

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3

U111 UV -+ Up22U11 Up2U12
U121 U 1U22 Up2U21 UL 2U22

U111 U21U12
Ug1U21 U21U229

gives a new rep with dimension mxn
and new vector space!

1 0 0
0 0 1
110 1 0
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Product of two representations of group

U1V UiVt U1 Upalip
- . . - U121 U112 U12U21 UL 2UV22
U1 1 V U192 V...
Direct (tensor) matrix product UgV = [u21V ugsV —
: : Uz 1U11 U21712
L . U V21 U 1U22
dimension m n

gives a new rep with dimension mxn
and new vector space!

permutation (n=3) representation of group 32

1 o 0]J]o 1 oo o0 1 0 1 0 0 0 1 1 0 0]
O 1 O 0O 0 1 1 0 O 1 0 O O 1 0 0O 0 1
00 1]|100][01TO0][0O0OT1T|[1TO0O0O]|]|[O0OT1 0]
® Rotation matrices for point group 32
1~ /30 -3 J3 0 ~-1.0 0
T(R,) = 3 L0 )TRI=| -/3 -2 0 ]| TRy= 01 0
0 0 1 0 0 1 0 0 —1 etc

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Product of two representations of group

U1V ULV U12U11 U2V 2
- . . - U121 U112 U12U21 UL 2UV22
U1 1 V U192 V .
Direct (tensor) matrix product UgV = [u21V ugsV —
: : Uz 1U11 U21712
L . U V21 U 1U22
dimension m n :

gives a new rep with dimension mxn
and new vector space!

permutation (n=3) representation of group 32

1 0 0 0O 1 0 0 0 1 0 1 O 0 0
0 1 0 0 0 1 1 0 0 1 0 0 0 1
00 1]]l10o0]l01oO0][0o0T1]]1 0 |
® Rotation matrices for point group 32 (S \
xl
-3 -J/3 0 -3 V3 0 10 0 Syl
T(R )= 3 L 0)TR)=] /3 -2 O T(R;) = 0 1 521
0 0 1 0 0 1 0 0 —1 etc S42
Sy2
S22
=9 by 9 matrices: 9 dimensional representation in LS Su3

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3 Sy3)



Reducibility

A study of possible representations of even a simple group like D3 seems to be a scaring task...

( 0 0 0 -1/2 —1/2v/3 0 0
0 0 0 1/2v/3 1/2 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 —1/2
T(Ry) = 0 0 0 0 0 0 1/2+/3
0 0 0 0 0 0 0
-1/2  —1/2v/3 0 0 0 0 0
1/2v/3  1/2 0 0 0 0 0
0 0 1 0 0 0 0

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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—1/23
1/2

o o o O

_ o O o O O

o o O

T(Rs)

o o o o o o

o = O O O o o o o

o o o o o o o o

|
o

|
—_

o o o o o o o o

o O o o o o o = o

o O o o o O

o o o o = o o o o

o o o o o
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Reducibility

A study of possible representations of even a simple group like D3 seems to be a scaring task...

BUT!

All representations can be built up from a finite number of
‘distinct’ 1irreducible representations. There is an easy way of
finding the decomposition.

( 0 0 0 —-1/2 —1/24/3 0 0 0 0\ 0 {6(3 -1 0
0 0 0 1/2v/3 1/2 0 0 0 ° ® 0 1
0 0 0 0 o 1 0 0 d“c‘obo 0 0 0
0 0 0 0 0 0 —1/2 —1/2(50‘6 0 0 0 0 0
T(R,) = 0 0 0 0 tw 0 T(R))=| 0o 0 0 o0 o0
0 0 0 0 “t@ 0 1 0 0 0 0 0
sC}
—1/2 —1/2[ e 0 0 0 -1 0 0 0 0
1/2[ V 0 0 0 0 0 001 0 0 0
K 1 0 0 0 0 0 o) \ 0 0 -1 0 0

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Reduction of any representation of group to
block diagonal shape

Representation (dimension=n) of a group
G 1n linear space L 1s reducible to a block-
diagonal shape that 1s a direct sum of
irreducible square matrices ti, 12, ... For
each element G, the representation has the

shape:
\ ( ReXeRe)
o7} O O
’7'1@’7'2@7’3@...:

OQ%O

O O O

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Reduction of any representation of group to
block diagonal shape

Representation (dimension=n) of a group
G 1n linear space L 1s reducible to a block-
diagonal shape that 1s a direct sum of
irreducible square matrices ti, 12, ... For
each element G, the representation has the

shape:
Y 2
O O O
O O O
TMTDOTDT3D ... =
O O % O
000 ™ k
ti is irreducible if: It is impossible to find —{ — T Lk
a new basis such that non-diagonal } k l %f —

clements of any t; in the new basis are zero / AV’ |
for all elements G.. ‘ Lk

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3




Reduction of any representation of group to
block diagonal shape

Representation (dimension=n) of a group

G 1n linear space L 1s reducible to a block- One can divide space L into the sum of
diagonal shape that 1s a direct sum of subspaces Li each of which 1s invariant
irreducible square matrices ti, 12, ... For and irreducible. S is a vector from L;
each element G, the representation has the and is transformed by matrices Ti(Ga).
shape: : L.
S+ are linear combinations
of n basis functions of L
/ o0 0 0 \ ( Sﬂ\ with some coegﬁcients
O I i Sr(1) = _ ¢t (Ve
0 0 T3 0 57-3 :
T D T2 D 713D — 71=1
1‘[1 dimoft -
n
\ 0 0 0 )\ ) Sri(lr1) =Y ¢ (lr)e;
j=1

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’|3
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Reduction of any representation of group to
block diagonal shape

Representation (dimension=n) of a group

G 1n linear space L 1s reducible to a block- One can divide space L into the sum of
diagonal shape that 1s a direct sum of subspaces Li each of which 1s invariant
irreducible square matrices ti, 12, ... For and irreducible. S is a vector from L;
each element G, the representation has the and is transformed by matrices Ti(Ga).
shape: /
S+ are linear combinations
/ n 0 0 0 \ ( Sﬂ\ of n basis functions of L
0 m 0 0 S, with some coefficients
0 0 T3 0 57-3

Looo0 )y

group G : space L under actions of Ga

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’|3
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Reduction of any representation of group to
block diagonal shape

Representation (dimension=n) of a group

G 1n linear space L 1s reducible to a block- One can divide space L into the sum of
diagonal shape that 1s a direct sum of subspaces Li each of which 1s invariant
irreducible square matrices ti, 12, ... For and irreducible. S is a vector from L;
each element G, the representation has the and is transformed by matrices ti(Ga).
shape: /
S+ are linear combinations
/ 0 0 0 \ ( Sﬂ\ of n basis functions of L
0 m 0 0 S, with some coefficients
0 O 0 S
T1OT2DT3D... = E :
\ 0 0 0 )\ )
group G : space L under actions of Ga
T1,72,73 ... :

structures of these matrixes depend
solely on group G and are
independent on the choice of L.

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’|3
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Irreducible representations (irreps) of point
group 32 (Ds)

1 31 32 2u 2y 2x
~—— - : — _— . e
Group E R, R, R, R, R,
element
G,
Representation
T1 1 1 1 1
T 1 1 —1 —1 —1
7 (10) (—%—wz)( —%w%) (—10) ( %—J%) < —;w/%)
01 Vi -3/ \-y% -4 0 1 -J3 -% 2 =%

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Irreducible representations (irreps) of point
group 32 (Ds)

1 3 3 2 2, 2
o —_— S o -
Group g R, R, R R, R,
element
Representation
T R vt
’Cz 1 | | —1 —3 -1
3 (10) (—% —\/i>< -3 \/i) (—10) ( 5_\/g> ( ! /g>
- O V/i =3 —\//% -3 01 —\/i - \/% -
Our magnetic 9x9 representation splits up 1n:
( 7 0 0 ... 0 \
0 T 0 .. 0O
rep =>_, irreps: E NyT;: = 71 @27 ® 373 = 0 0 m 0
Z@ J

EPIR Lo 00

V. Pomjakushin, Symmetgy constraints in magnetic structures PSI’|3



Classification of normal modes of a magnet

The crystal has symmetry group G

(12

Syl

R.R’,a,0

3N-dimensional space of expectation values of
the spins <y|s|y> defined on N discreet points

N
SJ SJ San€an

n=1a=x,y,z

H = Z Jo (R, R4 (R)sg(R)) (a,8=1x,y,2)

induced magnetic
representation of group G

T;;(Ga)

. , ,  /
is decomposed into independent normal modes St1, St2, ...
(specific vectors from 3N-dimensional space of spins)

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Classification of normal modes of a magnet

The crystal has symmetry group G H = Z Jo (R, R)sa(R)sg(R)) (o, 3 =m,y, 2)
(le \ R.R’,a,0
Syl
sz:1 |3N-dimensional space of expectation values of induced magnetic
522 |the spins <y|s|y> defined on N discreet points representation of group G
3y2 N
S22 ..
S Y snean T3(Ga)
n=1a=x,y,z
SxN
SyN . . . M
\ 5.y is decomposed into independent normal modes St1, S, ...

(specific vectors from 3N-dimensional space of spins)

St called normal modes or basis functions, corresponding to Ey, w, " can
be classified by irreps ¥ of group G

(70 0 o 0 /54

0 T2 0 .. 0 STQ

rep =_ irreps: Tz’j = E n,/TiV- 0 0 73 0 573
2@ J S

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3 K 0 0 0 ) \ )
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Normal modes of magnetic configurations for
spins sitting on the triangle corners

Point group 32
irrep Ti
1D linear subspace of 9-dimensional space

Sri=-—1-eq+1-ep+1-ep—1-e,

Normal mode for 1rrep T

One parameter mstead of 9 1s enough to describe the structure!

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Normal modes of magnetic configurations for
spins sitting on the triangle corners

Point group 32
irrep Ti
1D linear subspace of 9-dimensional space

Space group P321, no. 150
S :—1-em+1-exb+1-eyb—1-e*y;.

—C

Normal mode for irrep t ! f
NNy

Nl /

W N

> =

.»-..-.._._————.."..._._.-7

0

One parameter mstead of 9 1s enough to describe the structure!

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Normal modes of magnetic configurations for
spins sitting on the triangle corners

Point group 32

T enters 2 times

Normal mode 1 Normal mode 2

Y

\\\ 1//‘
\\\ P
- -
REN
| S
! \\
E SN

~
~
~
~
-~
-~
~
~
~
-~
-

55
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Normal modes of magnetic configurations for
spins sitting on the triangle corners

Point group 32

T enters 2 times

Normal mode 1 Normal mode 2

S~
~
~

-~
//
-
-~ \\\ ///
-~ + ~ -~
27N —Z -7
-7 J \\\ \\ g
- ~ -
P E REN -

- f ~ f
I I
|
!
|
|
{
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Normal modes of magnetic configurations for
spins sitting on the triangle corners

Point group 32

T2 enters 2 times Space group P321, no. 150

Normal mode 1 Normal mode 2

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Landau theory of phase transitions says that only one
irrep (+c.c.) is becoming critical and is needed to
describe the ordered structure

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’|3
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Landau theory of phase transitions says that only one
irrep (+c.c.) is becoming critical and is needed to
describe the ordered structure

Real example: Antiferromagnetic three sub-lattice ordering in Tbj4Aus)
Great simplification!

Zeroth cell contains 14 spins
=> 14%*3=42 parameters.

PHYSICAL REVIEW B 72, 134413 (2005)
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Landau theory of phase transitions says that only one
irrep (+c.c.) is becoming critical and is needed to
describe the ordered structure

Real example: Antiferromagnetic three sub-lattice ordering in Tbj4Aus)
Great simplification!

Zeroth cell contains 14 spins
=> 14%*3=42 parameters.

l one 1rrep

Only 3 independent spins are
needed!

PHYSICAL REVIEW B 72, 134413 (2005)

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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irreps of space groups SG. Some history and
an introduction

0. V. Kovalev, “Representations of the Crystallographic Space
Groups: irreducible representations, induced representations, and

corepresentations”’ 1961- (Gordon and Breach Science Publishers,
1993), 2nd ed.

S.C. Miller and W.F Love, “Tables of Representations of the

Crystallographic Space Groups and corepresentations of Magnetic
space groups (Colorado, 1967)

Harold T. Stokes and Dorian M. Hatch, "Isotropy Subgroups of the 230 Space
Groups," (World Scientific, Singapore, 1988).

ISOTROPY Software Suite

Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell, Department of Physics
and Astronomy, Brigham Young University, Provo, Utah 84606, USA,

http://stokes.byu.edu/iso

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Bloch waves, irreps of Bravias Lattice group

Space group G contains translation (f) BL group 7. t = n1t1 4+ nats 4+ nsts

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’|3
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Bloch waves, irreps of Bravias Lattice group

Space group G contains translation (f) BL group 7. t = n1t1 4+ nats 4+ nsts

kr — three y(r) can describe magnetic structure
Bloch waves e, u(r +1tp) = u(r v S
’ ( ) (x) Sx(r), Sy(r), Sz(r); u(r) <-> zeroth cell

f Fourie amplitude of mag. structure ¥ TUNS OVer discreet points given by atoms

S( S 1ty k_l_S* —1t, k)

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’|3

58



Bloch waves, irreps of Bravias Lattice group

Space group G contains translation (f) BL group 7. t = n1t1 4+ nats 4+ nsts

Representation theory

wave vector or propagation vector k = (p1by + p2bs + p3bs)

sort out/enumerate all irreps of 7€G

Matrices of irrep number ki D*(t) = exp(—ikt) 7'(t) — exp(—ikt)

ikr, u(r 4t L) — u(r) three y(r) can describe magnetic structure
Sx(r), Sy(r), Sz(r); u(r) <-> zeroth cell
r runs over discreet points given by atoms

Bloch waves

f Fourie amplitude of mag. structure
S(t ( S 1tk S* —1t, k)

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Bloch waves, irreps of Bravias Lattice group

Space group G contains translation (f) BL group 7. t = n1t1 4+ nats 4+ nsts

Representation theory

wave vector or propagation vector k = (p1by + p2bs + p3bs)

sort out/enumerate all irreps of 7€G

Matrices of irrep number ki D*(t) = exp(—ikt) 7'(t) — exp(—ikt)

Bloch wave y(r) is a basis function of irrep k of BL translation group

ikr, u(r 4t L) — u(r) three y(r) can describe magnetic structure
Sx(r), Sy(r), Sz(r); u(r) <-> zeroth cell
r runs over discreet points given by atoms

Bloch waves

f Fourie amplitude of mag. structure
S(t ( S 1tk S* —1t, k)

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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The k-vector types and Brillouin zones of
the space groups

propagation vector = a point on/inside Brillouine zone

Brillouine zone of Pmmm (I'o) Kovalev k-ve::)on;ll_abel‘WkaO:.fr:osmon'
ki9 [GM[0,0,0 1 Ja [mmm
koo X [1200 1 |b |mmm
k» |z 10,0,2 |1 |c  |mmm
ko4 U [1/20,172 |1 |d |mmm
kor |Y 0120 |1 e |mmm
kos |S (1721720 [1 [f  |mmm
o T 10,172,172 |1 |g |mmm

R [1/2,172,12[1 |h  |mmm

SM[u,00 i [2mm

A u012 2] [2mm

C [u120 [2 [k [2mm

E [u1212 2 | [2mm

DT |0,u,0 2 |m |m2m

| B [Ou12 |2 In |m2m

S D [12u0 [2 o [m2m

P [12u12 |2 [p |m2m

A .P. Cracknell, B.L. Davis, S.C. Miller and W.F. Love (1979) LD |0,0,u 2 19 |mm2

(abbreviated as CDML) H j01/2u 2 r  |mm2

Kovalev 0.V (1986) (1993) Representations of the G [120u |2 s |mm2

, Q |1/21/2u |2 |t |mm2
Crystallographic Space Groups (London: Gordon and Breach) ‘ —

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3 K 0,uv 4 lu 'm..




Basis functions of space group irrep

Propagation vector k
_I_

Space group elements g in
zeroth cell

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’|3

irrep with number v: T«
_, symmetry elements g are

represented by matrixes d<¥(g)
(I, % [, matrixes) with dim=/,
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Basis functions of space group irrep

Propagation vector k irrep with number v: T
+ _, symmetry elements g are
Space group elements g in represented by matrixes d<(g)

zeroth cell (I, % [, matrixes) with dim=/,

Its basis: 1, functions with

the same k /wi{u\
. kv
l)fl/ _ ul}{\l/ (r)ezkr/ 9
A=1,...1,)

that are transformed by

symmetry elements g by \wku )
matrixes d<’(g) Ly

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’|3
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Symmetry group of propagation vector,
examples of star ¢k}

16 .
Pnma 2 mmm Orthorhombic
No. 62 P 21 / n 21 / m 21 / a Patterson symmetry Pmmm

Symmetry operations

(1) 1 (2) 2(0,0,3) 3,0,z (3) 2(0,3,0) 0,y,0 4) 2(3,0,0) x,3,3
(5) 1 0,0,0 (6) a x,v,% (7) m x, _£7 Z (8) n(0,4,4) Lyz +T(n1t1 + noto + 7”L3t3)

Manyfold of all non-equivalent zZk = propagation
vector star {k}

{k}
p bs k=[0,u,v]
>< > b2 Jabel K
Little group GeG (H 1
leave k invariant 8) n(0,5,3) 1,32
Gx= ‘Plnl’

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3



Symmetry group of propagation vector,
examples of star ¢k}

16

Pnma 2 mmm Orthorhombic

No. 62 P 21 / n 21 / m 21 / a Patterson symmetry Pmmm

Symmetry operations

(5) 1 0,0,0 (6) a x,v,% (7) m x,%.z

(1) 1 (2) 2(0,0,3) 3,0,z (3) 2(0,3,0) 0,y,0

(4) 2(2,0,0) x,
(8) n(0,3,3) 1,

—|—T(Tl,1t1 -+ ’I”L2t2 + 7”L3t3)

Ba
e ae
o o
Lo PN

Manyfold of all non-equivalent zZk = propagation
vector star {k}

by K K
3 k:[O,U,V] 0 b3 { } k:[0,0,0]
>< > b2 Jabel K ® . b
label I’
Little group GeG (H 1
leave k invariant ) n(0,5,35) 1,02 Gk=G
Gk= ‘Plnl’

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3




Symmetry group of propagation vector,
examples of star ¢k}

16

Pnma 2 mmm Orthorhombic
No. 62 P 21 / n 21 / m 21 / a Patterson symmetry Pmmm
Symmetry operations
(1) 1 (2) 2(0,0,3) 3,0,z (3) 2(0,3,0) 0,y,0 4) 2(3,0,0) x,3,3
(5) 1 0,0,0 ©6) a x,y,+ (7) m x,4,2 ® n0.4.3) tye TL(mats+naty +nsts)
Manyfold of all non-equivalent zZk = propagation
vector star {k}
k} Kk}
7 S . k=[0,0,0] 1P .00
>\ > b2 apel K ® > by % . b
label I” label X
Little group GveG (H 1
leave k invariant (8) n(0,3,3) 3.,z Gk=G Gi=G
Gx= ‘Plnl’

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3



Space group irreps, examples
dimensions up to 6 (cf. 3 for point groups)

Example 1 Pnma k=[1/2,0,0], k20
bz{k:} irreps: two 2D 11, 12
: k=[1/2,0,0]
b g /2 /3 /4 /25 /26 /27 /28
—>——> b o ,
: - 1 0y (01 01} (01 01 10 1 0
label X () Tl (0 —1) (1 U) (-1 0) (1 0) (—1 0) (U 1) (0 —1)
T2=71X1 1 1 -1 -1 -1 -1
G = (G mrmmmmmmmmmmm e esmsssssosmsssssosmssseoe

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Space group irreps, examples
dimensions up to 6 (cf. 3 for point groups)

Example 1 Pnma k=[1/2,0,0], k20
bz{k:} irreps: two 2D 11, 12
k=[1/2,0,0]
b g )2 /3 /4 /25 /26 /27 /28
—>i—— b — ,
: 21 (1 U) (D 1) ( 0 1) (U 1) ( 0 1) (l {)) (1 0)
label X 7(g) 0 —1 10/ \-10/ \10 -1 0 01 0 -1
g
T2=71X%1 1 1 -1 -1 -1 -1
Ge=G  Example2 Pnma k=[0,0,0, k19
(K irreps: eight 1D 11, 12, 13, T4, T5, Ts, T7, T8
#1 1 1 1 1 1 1 1
® > b2 2 T R, S, e, (e
label 7 d°(g) 73 L = =5 1 § I =4
75 -1 1 -1 1 -1 1 -1
7T -1 -1 1 1 -1 -1 1
Gi=G =03 X P T0=%0 % FL- TR =0T X 2

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Space group irreps, examples
dimensions up to 6 (cf. 3 for point groups)

Example 1 Pnma k=[1/2,0,0], k20
bz{k:} irreps: two 2D 11, 12
: k=[1/2,0,0]
L g /2 /3 /4 /25 /26 /27 /28
> > b1 — ,
= TG IEIUDEY Y EY 6
label X 0 —1 10/ \-10/ \10 -1 0 01 0 -1
d(g)
T2=71X%1 1 1 -1 -1 -1 -1
G = (G e e eeesmsiissesesmsinee
) Example 2 Pnma k=[0,0,0], k19
K irreps: eight 1D 11, 12, 13, T4, T5, Ts, T7, T8
#1 1 1 1 1 1 1 1
® > b2 2 1 T L =i =1 =1 -3
label 7 4<(g) 73 1, =~ =1 1 ¥ =1 -
75 —1 1 -1 1 -1 1 -1
77 -1 -1 1 1 -1 -1 1
Gi=G A=A P2 T0=FA R T2 T8 =T ¥ 72
Example 3

Higher dimensions: Ia3d (#230) k=[1,0,0]: 1(6D) @ 3(2D)
k=[1/2,1/2,1/2]: 1(4D) @ 2(2D)

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3
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Relation of magnetic Shubnikov symmetry
and irreducible representation of space group

Paramagnetic crystallographic space group (PSG)

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3

Propagation vector of magnetic structure k
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Relation of magnetic Shubnikov symmetry
and irreducible representation of space group

Paramagnetic crystallographic space group (PSG) Propagation vector of magnetic structure k

\/

choose one 1rreducible representation (irrep) of PSG

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3

63



Relation of magnetic Shubnikov symmetry
and irreducible representation of space group

Paramagnetic crystallographic space group (PSG)

Propagation vector of magnetic structure k

\/

choose one 1rreducible representation (irrep) of PSG

magnetic symmetry
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Relation of magnetic Shubnikov symmetry
and irreducible representation of space group

Paramagnetic crystallographic space group (PSG)

Propagation vector of magnetic structure k

\/

choose one 1rreducible representation (irrep) of PSG

magnetic symmetry
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Relation of magnetic Shubnikov symmetry
and irreducible representation of space group

Paramagnetic crystallographic space group (PSG)

Propagation vector of magnetic structure k

\/

choose one 1rreducible representation (irrep) of PSG

magnetic symmetry
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Construction of
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(normal modes)
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constrains on the
components of basis
function for >1D
1rrep
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Relation of magnetic Shubnikov symmetry
and irreducible representation of space group

Paramagnetic crystallographic space group (PSG)

Propagation vector of magnetic structure k

\/

choose one 1rreducible representation (irrep) of PSG

magnetic symmetry

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’| 3

representation

|

Construction of
basis functions
(normal modes)

!

constrains on the
components of basis
function for >1D
1rrep

'

Magnetic structure made
from linear combination of
basis functions (normal
modes)
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Relation of magnetic Shubnikov symmetry
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Relation of magnetic Shubnikov symmetry
and irreducible representation of space group
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Comparison of Shubnikov and representation

analysis: same symmetry adapted solutions.
1[4/m, k=0 has 8 1D irreps 11,... Ts.

4 real irreps  <--> Shubnikov groups of /4/m One unit cell with Fe
4 complex irreps
I N4 hy his hos h3g hog h39 b Mo """""""""" >
. T 1 4* 2 4~ —1 —47 m —4- : EI vacancy .:
. @ ¢
O I4/m’ | l l l —1 —1 —1 —1 5 5 . @
T3 l i —1 —1 I I —1 —1 ! © : ©
Ts I -1 1 = 1 -1 1 -1 ; ; 5
77 l —i -1 I I —1 — | ] 5 :
8 unique Fe |
Fe Magnetic representation \
(16i) (x,y,z): all eight irreps e G o
I'=311 ® 31 P 3... B 31x t . @
i e G
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analysis: same symmetry adapted solutions.
1[4/m, k=0 has 8 1D irreps 11,... Ts.

4 real irreps  <--> Shubnikov groups of /4/m One unit cell with Fe
4 complex irreps
/I l /I 14 /14 /I 15 1135 /I 38 /133 /I 30 \\“; """""""""""""""""""""" ----------------- >
. T ] 4* 2 4- —1 —47 m —4° vacancy
. @ .
O J4/m’ ] l l l — — | — | —1 f 5 . @
nC2m’ | i —1 —i 1 i —1 —i 5 . -«
Ts I = I = ] —1 I = ; ; ,
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8 unique Fe E
Magnetic representation \
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(16i) (x,y,2): all eight irreps 5 © | ¢ o
I'=311 ® 31 P 3... B 31x L . @
s S G
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Web/computer resources to perform group theory
symmetry analysis, in particular magnetic structures.

* Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell

ISODISTORT: ISOTROPY Software Suite, http://iso.byu.edu
ISOTROPY Software Suite

Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell, Department of Physics
and Astronomy, Brigham Young University, Provo, Utah 84606, USA,

Computer programs to construct symmetry adapted
magnetic structures and fit the experimental data.

* Juan Rodriguez Carvajal (ILL) et al, http://www.ill.fr/sites/fullprof/
program Baslreps

* Vaclav Petricek, Michal Dusek (Prague) Jana2006 http://
jana.fzu.cz/

This lecture:
http://sing.web.psi.ch/sing/instr/hrpt/doc/magdif| 3.pdf
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Case study. Antiferromagnetic order
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Case study. Antiferromagnetic order
in orthorhombic multiferroic TmMnOs

steps In magnetic structure determination

|. Experiment. g-range/resolution.

2. Finding the k-vector. Usually but not always easy. Profile
matching

3.  Symmetry analysis. Constructing the basis functions of
one irreducible representation of the magnetic
representation.

4. Fitting the data. In difficult cases ‘simulated annealing’
search of the solution is needed

V. Pomjakushin, Symmetry constraints in magnetic structures PSI’|3
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Step 1

Experiment. q-range/resolution.
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cf. resolution/q-range

HRPT |.9A

! Phase No: 2 TmMnO3 tau2-basirep
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Cf. resolution/q-range
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V. Pomjakushin, Symmetry constraints

Step 2

finding the propagation vector of
magnetic structure (k-vector).
Le Bail profile matching fit.

in magnetic structures PSI’|3
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T-dependence of Bragg peak positions

2theta (deg)
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V. Pom;

Refining the propagation k-vector
from profile matching fit

0.50 eo------ o - - - @_@_%
| o
\
0.49 - ?
- \
o
0.48 - é;
k=[kx,0,0] &
0.47 - \
®
- \
é\
0.46 - Q.
©
| o,
0.45 - Q
| //// | | §I
1 2 32 36 40

T(K)
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V. Pom;

Refining the propagation k-vector
from profile matching fit

0.50 - ©--—---- o ---00Fy In the example we determine
? iIncommensurate structure
0.49 - gi
\
o
0.48 - éi
0.47 - \
®
N \
é\
0.46 a
| ©
b\
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// €
I // | ] q
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Step 3

Symmetry analysis.
Classifying possible magnetic structures
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Constructing of normal modes of magnetic
structure from irreps

Case study of magnetic structure of multiferroic TbMnOs3

Space Group G: Pnma, n0.62 o
propagation vector k=[,0,0] >
e »
~
¢ -
" .
&
g -
— »

New Journal of Physics 11, 043019 (2009)
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Constructing of normal modes of magnetic
structure from irreps

Case study of magnetic structure of multiferroic TbMnOs3

Space Group G: Pnma, n0.62 o
propagation vector k=[u,0,0] >
e »
~
# -
v @
has 4 1D 1rreducible representations
o P

New Journal of Physics 11, 043019 (2009)
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Constructing of normal modes of magnetic
structure from irreps

Case study of magnetic structure of multiferroic TbMnOs3

Space Group G: Pnma, n0.62 o
propagation vector k=[,0,0] : > AN
~
* -
! 5 - ’
: : : : ' o
has 4 1D 1rreducible representations : . =
<« >
New Journal of Physics 11, 043019 (2009) symmetryi linear Space .
irreps ¢ spanned by Mn spins
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Classifying possible magnetic structures
basis vectors/functions Sti, St2, St3, ...

Pnma, k=[0.45,0,0]
Mn in (4a)-position

Magnetic representation is reduced to four
one-dimensional irreps

311 D 310 B 313 D 374

g1 ¢g2 g3z g4

7 1 a 1 a
T 1 a —1 —a
™ 1 —a 1 —a
w 1 —a -1 «a
q — 67”7%
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Classifying possible magnetic structures
basis vectors/functions Sti, St2, St3, ...

Pnma, k=[0.45,0,0]
Mn in (4a)-position

Magnetic representation is reduced to four
one-dimensional irreps

3T1 B I @@@ 374
00‘% %%"0 0*%*% %*OO
g2 g5 Mn-position I 2 3 4
7 1 a 1 a
> 1 a -1 -—a , . .
mol o—a 1 —a 3= +lej, —a ey —leg, +a ey,
—

T4 1 —Qa —1 a 7/—/3 — —|—1ely _I_ a/*eZy —|_ 163y —|_ a/*e4y

7,-/:/3 = +leq, + &*922' — 1932' — a*eélz
q — 67”7%
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Classifying possible magnetic structures
basis vectors/functions Sti, St2, St3, ...

Pnma, k=[0.45,0,0]
Mn in (4a)-position

Magnetic representation is reduced to four
one-dimensional irreps

371 b I @@@ 374
00‘% %%"0 0*%*% %*OO
g2 g5 Mn-position I 2 3 4
7 1 a 1 a
> 1 a -1 -—a , . .
mol o—a 1 —a 3= +lej, —a ey —leg, +a ey,
—

T4 1 —a —1 a 7/-/3 — —|’1ely + a*QQy + 163y + a/*e4y

7,-/:/3 = +leq, + &*922' — 1932' — a*eélz
q — 677’&7‘%

Assuming that the phase transition goes according
to one irreducible representation T3 the spins of all

four atoms ar‘w Qjﬂes instead of 12!

C1575 + 02875 + C3573
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Steps 3-4 in practice

Solving/refining the magnetic structure
by using one irreducible representation
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Steps 3-4 in practice

Solving/refining the magnetic structure
by using one irreducible representation

|. construct basis functions for single irreducible
representation irrep (use Baslreps, SARAh, MODY)

2. plug them in the FULLPROF and try to fit the data. In
difficult cases the Monte-Carlo simulated annealing

search is required
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Steps 3-4 in practice

Solving/refining the magnetic structure
by using one irreducible representation

|. construct basis functions for single irreducible

/ representation irrep (use Baslreps, SARAh, MODY)
2. plug them in the FULLPROF and try to fit the data. In

\ difficult cases the Monte-Carlo simulated annealing
3

search is required
. If the fit is bad go to | and choose different irrep. If

the fit is good it is still better to sort out all irreps.
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Refinement of the

1 .
S(r) = §(C’1S;3 + Co8"5 4 C3875)e*™™ ™ 4 c.c.
k=[0.45,0,0]

/
3 — +ley,; — a*e2zc — les, + af*e4x

/!

/11
3 — +1leq, + &*622 — les, — &*642
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Refinement of the data for Ts

1 .
S(I‘) = 5(01 ;_3 —+ CQ 7/_,3 -+ 03 ;./é)€27mkr -+ C.C.

to (p .
0
e o)
A
o ST N, eta
@S N T

| ' | ' | ' |
2.0 - TmMnO,, 35K 7]
1 DMC, A=4.5A
1.5 - at T=35K
f’é Cl=2.11(1)ps, C2=0,
S :
S 104 C3=0.67(2) €'® s
= (p can be fixed to any value.
*_E, ‘. Experiment data are insensitive
% |
=

v 20, (deg)
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Visualization of the magnetic
structure

a cycloid structure propagating along x-direction

S(r) = Re [(C1SLs + |Cs] exp(ig) S24) exp(2mikr)

/ *
3 — +ley, —a eq, — leg, + a*eélx

11/ *
3 — +lei, +a"eq, — leg, — a*eélz

¢ -
- \_0 .4 6 ’0 ,0'\ ’

Y o - -
~ o | g adl
&~ P P
/2 P 4 o
» v . -
3 ol P 4 < |
o 4 = -

9 - ~~
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Visualization of the magnetic
structure

Propagation of the spin, e.g. for atom no. |
S1(x) = Cqcos(kx)e, + |Cs|cos(kx + ¢)e,

o
_04609) >
K=\l e P & p
Y o - -
~ o g adl
2 | LT
p v ¢ P
3 ol P 4 < |
V'
0 4 p y

- -
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Visualization of the magnetic
structure: xz-projection

for arbitrary :
both direction and size of S| are changed

4 ¥ s e T —
— G — . o SA K
I ¥ 10 Nk B oS s
Z _» <— ~ *- ~ R

)

< >
K=[0.46,00] “__/
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Visualization of the magnetic
structure: xz-projection

for arbitrary :

Propagation of the spin, e.g. for at N
both direction and size of S are changed ©Opagation © pih, €.8. ol atom no

S1(x) = Cqcos(kx)e, + |Cs|cos(kx + ¢)e,

4 8 > *< ~>
— G — . o SA K
| v %, ~ < ~>

Z _» - ~ - - x
| y X, ~ < ~p

X AN

< >
K=[0.46,00] “__/
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Visualization of the magnetic

structure:
for p=0:
only the size of S| are changed
4 ) - -
S g A -
| 3 - -
Z S Dy ~Sh <

?ﬁ 1

X

< >
K=[0.46,00] “__/
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XZ-projection

Propagation of the spin, e.g. for atom no. |

Si(x) = (Cre, + |Csle.) cos(kz)

A& — g
- -

& =V
~ -

& =V
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Web/computer resources to perform group theory
symmetry analysis, in particular magnetic structures.

* Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell

ISODISTORT: ISOTROPY Software Suite, http://iso.byu.edu
ISOTROPY Software Suite

Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell, Department of Physics
and Astronomy, Brigham Young University, Provo, Utah 84606, USA,

Computer programs to construct symmetry adapted
magnetic structures and fit the experimental data.

* Juan Rodriguez Carvajal (ILL) et al, http://www.ill.fr/sites/fullprof/
program Baslreps

* Vaclav Petricek, Michal Dusek (Prague) Jana2006 http://
jana.fzu.cz/

This lecture:
http://sing.web.psi.ch/sing/instr/hrpt/doc/magdif| 3.pdf
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further complications

1. several irreps involved, e.g. exchange multiplet

2. multi-k structures

3. spin domains, k-domains, chiral domains for
single crystal data
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