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Today, global trade of energy carriers is fossil. Tomorrow? ' PSI

NEOM, Saudi Arabia, 4 GW electrolyzer

Energy carrier import (+) / export (-) among world regions from wind & solar in year 2027+
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Motivation

Several global studies on low carbon-fuels either:

e are Europe-centric: Rest of the world has the role of a supplier for Europe

e use normative scenarios with regional (autarchy) targets or single-sector use
e (Consider either biofuels, or e-fuels, or only 100% green alternative fuels

e Liu, Zhang, Bauer, McKenna (2025): Review on low-carbon fuels in Energy-System Models

e |EA(2024): Report on E-fuels in Decarbonising Transport; World Energy Outlook Scenarios

Our analysis:
e Future production mixes & usage of low-carbon-fuels under stringent climate scenario
e Focus on major export world regions

e Assumption: On a macro-scale, the world is market-driven and trade-oriented, at least
for exporter regions (i.e., outside the EU)

— Single major policy driver is an internationally stringent carbon price proxy.
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Traditional cost-optimal analysis

GMM = Global Multi-Regional Market-Allocation (MARKAL) model:
e Detailed supply-side energy-system model to satisfy sectorial useful energy demands
e 400+ technologies with technical-economic characteristics

Resources Conversion Processes End-Use * System-cost minimization through

e ) optimal build-up/allocation of
technologies under CO2 prices

* Aggregated demand sectors: E.g.

“Other Surface Transport” (= Bus,

Truck, Rail, Ship)

10-year investment time-steps; 6 time-

slices per year for electricity: Winter /

Intermediate / Summer and Night/Day.

Reported time-horizon is 2060; model

is run until 2110 (resource depletion)

* 17 world regions
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17 World Regions are Modelled

Regions are different in energy resource potentials, demand growths, power sector costs
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Nomenclatura of alternative fules (in this talk only!)

1%t gen Biomass Synfuels (ren, “green”) Synfuels (fossil, n-ren)

* Human-edible: Corn grains, « Liquid fuels from hydrogen (ren.), solar * Liquid e-fuels (from any
Sugar cane, oil crops, processes, 2" gen biomass (via syngas hydrogen or carbon source)

* Domestic waste or other thermo-chemical conversion) * Liquid biofuels from any

ond gen Biomass * CO2 only from DAC (in base case) biomass via any process

Ligno-cellulosic biomass:

, Liquid e-fuels from hydrogen
* Wood (residues)

* Stover .
Hydrogen (ren, “green’) Hydrogen (fossil, n-ren)
From: From any source:
* renewable electricity, or “Grey”, “pink”, “blue”, “turquoise”

« 2"dgen biomass

* Single, international pooled markets for each fuel

« H2transport: long-distance transport with ammonia (or existing LPG) tanker ships. Equal costs for each
world region. Inside regions: Truck or pipeline (if not decentral)

 Data of synthetic fuel production technologies: Project of Swiss Federal Office of Energy (report under revision)
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Alternative fuel production technologies in GMM (l)

Fuel Technology Output
from fossil fuels
Natural gas SMR - FT; ATR - FT Liquid Fuel
Natural gas Solar reforming - FT Liquid Fuel
Coal Gasification - FT Liquid Fuel
Natural gas SMR - catalyst Methanol
from biomass
Sugar crops, corn grains, stover conventional via Fermentation; Ethanol
Cellulosic dissection
Wood Gasification Bio-Methanol
Oil crops, wood Transesterification; Pyrolysis Biodiesel, incl. FAME (fatty acid
methyl esters)
Oil crops Esterification Liquid Biofuel, incl. FAEE (fatty acid
ethyl esters)
Wood, domestic waste Anaerobic Domestic Waste Biogas, incl. DME (dimethyl ether)

Digestion (electricity co-generation)

2nd sen biomass Gasification - FT (sustainable) Liquid Fuel
2nd gen biomass Pyrolysis (sustainable) Liquid Fuel
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Alternative fuel production technologies in GMM (ll)

Fuel

Hydrogen (renewable and non-
renewable), any CO2 source

Hydrogen (renewable and non-
renewable), any CO2 source

Renewable hydrogen, DAC

Water, DAC

Grid electricity
Nuclear heat/electricity
Natural gas
Natural gas
Renewable electricity
2"d generation biomass

Hydrogen

Technology

from hydrogen or solar
RWGS - FT

RWGS
RWGS - FT

Solar thermal - FT

Hydrogen production

PEM, AE
Cu-Cl and others
SMR; ATR; CLR; with CCS
Pyrolysis
PEM, AE, SOE
Gasification, with CCS

Methane production
Methanation
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Output

Liquid Fuel
Methanol
Renewable liquid Fuel

Renewable liquid Fuel

“Grey” hydrogen
Pink hydrogen
Blue/Grey hydrogen
Turquoise hydrogen, solid carbon
Green (sustainable) hydrogen
Green (sustainable) hydrogen

Methane
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Biomass Potentialin GMM

Unit: Pl/y

B Domestic Waste

@ Oil Crops & Corn Grains
| Stover

M Suger Beet & Sugar Cane
M Wood Residues

* Inyear 2020, global biomass use for energy = 60 EJ, primary energy supply =609 EJ [IEA, 2023]
* Our potential assumption = 195 EJ/y (const. over time)
* Share of wood residues > 50%
e Otherestimates: 107 - 1’723 EJ/y (slade et al., 2014), 90 — 1’590 EJ/y (Thran etal., 2010), 215 = 1’272 EJ/y (Smeets et al, 2007)
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Carbon-Storage Potential in GMM (and results)

Unit: Gt CO2

Usage (from results):

1 2020-2030

B 2030-2040

71 2040-2050

@ 2050-2060
2060-2070

W 2070-2120

M not used until 2120

* Results: Potential is used up in
region Japan/Korea/Taiwan until
2070

Assumed potential: 1’700 Gt CO2 (Hendriks et al., 2004)

Other estimates: 8’000 Gt CO2, «low, practical» (kearnsetal.,2017); 14’000 GtCO2 (Global CCS Institute, 2023) ; Minimally
practically 290 Gt CO2 (Grant et al., 2022)

Large variation in estimates of regional costs: 4 — 45 $/tCO2 (smith et al., 2021)
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Scenario Assumptions; Result on CO2 emissions

* Strong CO2-reduction by CO2 price proxy,
convergent across world regions

* General scenario assumptions from World Energy

Council’s SYMPHONY scenario (WEC & PSI, 2019):

 Medium growth rates of GDP & useful demands
(no major behavioural changes)

* Investmentin CAPEX-intensive technologies
possible (if cost-effective): Nuclear, new
hydropower

e CCS (Carbon-Capture & Storage) accepted and
cost-effectively deployed (base case)

* Cost-driven development, only few other policy
targets:

 EUS31: slightly stronger CO2 price proxy, and
aviation synfuel target
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CO2 Emissions Energy Sector
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EU31: 3.3 GtCO2/y (in 2020) - 0.3 GtCO2/y (in 2050)
Global emissions in 2024: 37.8 Gt CO2 [IEA, 2024]
Reductionis in IPCC’s C2/C3 range (<= 1.5°C (>50%)
after a high overshoot, <=2°C (>67%) )
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Results: Cost-minimal Sources of (liquid) Synfuel Production
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Global: Synfuel by production source

I
2020 2030 2040 2050 2060

Hydrogen (ren)
O Biomass
B Biomass (2nd)
@ Hydrogen
O Solar
O Natural Gas
@ Natural Gas (to MeOH)
O Hydrogen (to MeOH)

 «Biomass»: Mainly 1st gen. (3 ElJ/y biodiesel, 8 EJ/y ethanol in 2050)
* «Hydrogen»:
* “Hydrogen (ren)” stays zero 2060+. Comparison: I[EA’s range in
year 2050: 2,10,13 EJ/y («low carbon hydrogen»)
* “Hydrogen” (all sources) > 0 after 2060 in some regions
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Brazil: Synfuel by production source
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North Africa: Synfuel by production source
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Overview: Synfuel production 2050

"1 Natural Gas

1 Hydrogen (to MeOH)
I Biomass (2nd)

7] Biomass

| Solar

* Large producers: USA, Brazil, Sub-Saharan Africa
e Similarresults in study McKinsey (2023): 76% investments in biofuels vs. only 24% in e-fuels in 2050

13 PSI Centers for Nuclear Engineering and Sciences & Energy and Environmental Sciences 13.10.2025



Synfuel use is mostly in transport

Aviation
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60 60
50 50
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40 40
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i
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10 10
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Train, Bus/Truck, Ship
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O Fossil

O Methanol

O Bio-Ethanol

O Bio-Methanol

E Biodiesel

@ Synfuel (ren,2nd)

B Synfuel (fossil, n-ren)
O Biogas

B Hydrogen

O Electricity
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Note: Personal car energy-demand decreases because of electrification
Hydrogen: mostly for heavy surface-transport (also in form of ammonia), only marginally for personal cars
Comparison with IEA: H2 in transport in year 2050: 6 EJ/y in IEA’s APS scenario
Methanol: very small shares in transport, but increased use in energy system (mostly from H2 in 2050)
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Personal Cars

H
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oFossil

OMethanol
OBio-Ethanol
OBio-Methanol

@ Biodiesel

B Synfuel (ren,2nd)

B Synfuel (fossil, n-ren)
OBiogas

B Hydrogen

O Electricity
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Hydrogen Production

Global: Hydrogen Production

70 A
o Electricity
60 A
@ Electricity (ren)
50 4
B Biomass
40 -
=y B Biomass (2nd) wtih CCS
Ll
30 A
O Natural Gas with CCS
20 1 B Natural Gas
10 1 B Coal with CCS
0 m Coal
2020 2030 2040 2050 2060

Methane pyrolysis in year 2050: 5 EJ/y (“turquoise” H2)
Compare: IEA’s (normative) NEZ scenario:
380 Mt H2 in year 2050 = 46 EJ (with LHV 120 MJ/kg)

Use in 2050: Half of it (15 EJ) goes to end-use sectors
(FC-CHP and heavy transport)
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Examples of exporter regions:

LAC: Hydrogen Production

2020

2030 2040 2050 2060

DOElectricity

B Electricity (ren)
mBiomass

OBiomass (2nd) wtih CCS
ONatural Gas with CCS

@ Natural Gas

B Coal with CCS

B Coal

MIDEAST: Hydrogen Production

|’=|Eu
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2030 2040 2050
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2060

O Electricity

B Electricity (ren)

B Biomass

OBiomass (2nd) wtih CCS
ONatural Gas with CCS

@ Natural Gas

B Coal with CCS

mCoal

EJly

2.5 4

1 4

0.5 1

' PSI

LAC: largest producer region

(contains Chile)

BRAZIL: Hydrogen Production
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Overview: Alternative Fuel Exportin 2050 (EJ/y)
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% AN : ,{ ! ] Bio—Ethanol
- 5\ o B Hydrogen

I Hydrogen (ren)

1 Synfuels (fossil, n-ren)
1 Synfuels (ren)

1 Methanol

« H2:Trade across 17 world regions in 2050: 2 EJ/y (IEA’'s WEO 2024: 3-9 EJ/y).

 Renewable H2 (2" gen biomass, electrolyzer with REN) is barely traded; traded H2 is mostly from Gas + CSS
 “Synfuels (ren)”: mostly from biomass.
 Conventional biofuels have more diversity in export regions
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Sensitivity Analyses

1. Biomass: Reduced potential and doubled cost

2. Carbon Capture and Storage: Reduced potential and higher costs

3. DAC: not required for hydrogen-based liquid fuels (any source is valid at cost of CCS)
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1) Biomass: -30% reduced potential & doubled extraction costs

Base Case:
Global Synfuel production by source

100 1
90 1 Hydrogen (ren)
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70 1 @ Biomass (2nd)
60 1 @ Hydrogen
>
S 50 O Solar
w
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30 @ Natural Gas (to MeOH)
20 0 Hydrogen (to MeOH)
10
o ]
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Global Hydrogen production by source
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o Electricity
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50
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40
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201 m Natural Gas
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Reduced* Biomass:
Global Synfuel production by source
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50 @ Hydrogen
5‘ O Solar
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30 A @ Natural Gas (to MeOH)
20 A O Hydrogen (to MeOH)
10 A
0
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Global Hydrogen production by source
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O Electricity

60 1

@ Electricity (ren)
50 |
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40 1
OBiomass (2nd) wtih CC<

EJly

30 1

O Natural Gas with CCS

20 A

m Natural Gas

10 1 B Coal with CCS
| —

0 T T T T »  ECoal
2020 2030 2040 2050 2060
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*: -30% biomass potential, uniform across
egions; -10% in INDIA, EU31 (more stringent
eduction leads to infeasibility of

optimization problem)

* Biomass extraction reduced from
143 EJ/yto 114 El/y in year 2050
(now similar to IEA’s WEQO 2024)

* Liquid alternative fuel production:
smaller scale-down for biomass

* No effect on H2 production

13.10.2025



2) CCS: Reduced potential to 1%; Costs 18% = 73$/tC0O2

100 ~
90 A
80 A
70 A
60 A
50 A
40 A

EJly

30 1
20 A
10 A

0

70

60 -

50

40 1
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30 -1

20 A1

10 4
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Before:
Global Synfuel production by source
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O Biomass
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@ Hydrogen
O Solar
O Natural Gas
@ Natural Gas (to MeOH)
O Hydrogen (to MeOH)

Global Hydrogen production by source
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o Electricity
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o Natural Gas with CCS

B Natural Gas
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2040

2050

2060

, mCoal

PSI

Reduced CCS Potential:

Global Synfuel production by source
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* Liquid e-fuels (cat. “Hydrogen”)

mBiomass with DAC are cost-effective in
@ Biomass (2nd
e 2050+

@ Hydrogen

o Natural Gas
@ Natural Gas (to MeOH)

O Solar °

But in response: Commercial
MeOH from hydrogen vanishes

O Hydrogen (to MeOH)

—>Total amount of liquid alternative fuel

2020 2030 2040 2050 2060

2020

2030

2040

10 1 ® Coal with CCS
0 4 B Coal

2050

production similar

Global Hydrogen production by source

@ Electricity (HT,CuCl,Pink)

D Electricity

* H2 productionis approx. halved
« BECCS s replaced by generic

@ Electricity (ren)

B Biomass

biomass (without CCS)

oBiomass (2nd) wtih CCS

O Natural Gas with CCS ° EleCtrOlyzerS and nery “pink”
@ Natural Gas
hydrogen are used.

2060
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3) DAC is not required for liquid e-fuels

Before:
Global Synfuel production by source

100 7
90 1 Hydrogen (ren)
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>
35 50 A O Solar
w
40 - O Natural Gas
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2 O Hydrogen (to MeOH)
10 A
o l
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Global Hydrogen production by source
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no DAC required:

Global Synfuel production by source
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Global Hydrogen production by source
70 1
@ Electricity (HT,CuCl,Pink)

60 -
O Electricity

50 1 o Electricity (ren)

40 4 B Biomass

o Biomass (2nd) wtih CCS

30

O Natural Gas with CCS

20 A

@ Natural Gas

10 1 B Coal with CCS

. . . . . B Coal
2020 2030 2040 2050 2060

0

20 PSI Centers for Nuclear Engineering and Sciences & Energy and Environmental Sciences

PSI

Now, liquid e-fuels (from
renewable hydrogen) come in
2050+

H2 production nearly the same
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Conclusions y PSI

Under a stringent, global climate policy and a free global market:

* Liquid e-fuels. Without a cheap source of carbon, will likely not be cost-effective before 2050
* Direct Air Capture is likely not an economical source of carbon for e-fuels

* CCS has pivotal role: with large CCS deployment, liquid e-fuels will likely not enter

 Biomass. Seems to be cost-effective for liquid fuel production

* Biomass is re-directed away from power & heat sectors (in our results: power balanced by Gas + CCS)

 Hydrogen. Boosted by BECCS. Limiting CCS boosts electrolysers (year 2040+), but reduces H2
amounts.

* Rising useful energy demands + Phasing-out fossil electricity + Electrification of demand-
sectors delays electrolyser deployment globally by at least a decade (regionally-diverse) with
respect to normative scenarios
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Limitations / Future Research

e E-fuels. Cost-effectiveness may depend on hourly modeling of intermittent renewables.

e Chemicalindustry. Synfuels pathways intersect with non-energy sectors. Modelling possible?
* Modeling of other synergies, e.g., H2 may be shipped as ammonia, which can also drive ships.

e Carbon leakage in trade between global regions:
e InGMM : CO2 source accounted, trade for generic alternative fuels is with an average of CO2
content - perhaps reason for liquid fuels from natural gas)
e Exacttracing of CO2in all traded energy and chemical pathways required

- Implementable in real-world? Examples:
* Increased bureaucracy of EU’s Carbon Border Adjustment Mechanism
* Variation & metering issues of H2-blending into the existing methane grid
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BACKUP
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Global car sector: Assumption on v-km & Result on Techs PSI

40000 Technology Mix of Mileage for Cars

O 5SAFRICA A0000 - e

GCC

= MAFRICA 35000 A

e MIDEAST

mm—LAC 30000

= BRAZIL OLiquid Fuel ICEV

MDA iqui ;
CENASLA > 25000 0O Liquid Fuel Hybrid

_— € B Liquid Fuel Plug-in

s CHINAREG f 0 Gas Fuel ICEV

mmm ASIARAC c 20000 as rue

mmEEUR = 0 Gas Fuel Hybrid

== RUSEIA 2 15000 B Hydrogen Hybrid

E==CANMEX B Hydrogen Fuel Cell

mALUSNAL 10000 B Electric Vehicle

m |PHRTN

—EU3 5000

— 5

== Dlenelopped regions 0

2010 2020 2030 2040 2050 2060 2020 2030 2040 2050 2060

e Comparison with WE02024: “Zero-emission vehicles” in year 2035:
30%, 35%, and 45% in the STEPS, APS, and the NZE scenario (BEV,

PHEV, H2); we have 34% in year 2040.
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