THIS MANUSCRIPT IS UNDER REVIEW IN
THE JOURNAL OF INDUSTRIAL ECOLOGY
ID 24-JIE-8438.R2

When Correlation Matters: A Practical Guide to
Dealing with Uncertainty in the Case of Data
Disaggregation

Simon Schulte!?, Arthur Jakobs?, Rick Lupton*

! Life Cycle Sustainability, Department of Sustainability and Planning, Aalborg Univer-
sity, 9000 Aalborg, Denmark.

2 Industrial Ecology Freiburg, University of Freiburg, Freiburg, Germany.

3 Center for Energy and Environmental Sciences & Center for Nuclear Engineering and
Sciences, Laboratory for Energy Systems Analysis, Technology Assessment Group, Paul
Scherrer Institut, Villigen PSI, Switzerland.

4 Centre for Sustainable Energy Systems, Institute of Sustainability and Climate Change,
University of Bath, Bath, UK.

Correspondence: Simon Schulte, simonsc @plan.aau.dk, Aalborg University, 9000 Aal-
borg, Denmark.

22

23
24
25
26
27
28
29
30
31
32
33

34

Article Type: Methods Article

Contflict of Interest Statement: The authors declare no conflict of interest.

Abstract

Correctly modelling the relationships between correlated, uncertain input data
is crucial for producing accurate uncertainty estimates of model results. This re-
quires both an uncertainty analysis that accounts for correlations and the appro-
priate communication of the results, so that other analysts can correctly interpret
the reported uncertainties. However, neither is common practice in industrial eco-
logy modelling. A typical case for correlated results is the disaggregation of a total
value into uncertain shares, for which we present a practical yet robust approach to
model the uncertainty. Our approach is based on two standard and two generalised
Dirichlet distributions, and it uses the maximum entropy principle to choose min-
imally biased distribution parameters in the absence of specific known values. We
discuss how correlation should be communicated to preserve accurate uncertainty
information and provide examples to quantify the difference it makes to the results
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when the correlation is simplified or completely neglected. The proposed procedure
will improve the accuracy of uncertainty quantification in Material Flow Analysis
(e.g. where allocation coefficients split flows to sectors), Input Output Analysis (e.g.
where aggregated environmental impact data has to be disaggregated to detailed eco-
nomic sectors), and some instances in Life Cycle Assessment (e.g. where market
shares are uncertain). Last but not least, to lower the technical barrier to applying
these approaches, we provide easy-to-use Python and R packages which automate
the approach.

KEYWORDS: industrial ecology, Dirichlet, maximum entropy, MFA, 10, LCA

1 Introduction

Having solid knowledge of model uncertainty is paramount for both robust decision-
making (Morgan et al., 1990; Reale et al., 2017) and for efficiently “prioritising data
collection efforts” (Groen and Heijungs, 2017). However, Industrial Ecology (IE) re-
search frequently lacks quantitative uncertainty estimates (Laner et al., 2014; Groen and
Heijungs, 2017; Zhang et al., 2019). Accurate uncertainty quantification is a particu-
lar challenge in the common case that IE model results are formed from the aggregated
sums of many individual data points: for example, the contribution of different sectors’
footprint multipliers in Input-Output Analysis (IOA); the total material stock in a Mater-
ial Stock and Flow Analysis (MSFA) being composed of stocks in different sectors and
products; or the overall environmental impacts from contributions of multiple processes
in a Life Cycle Assessment (LCA).

What these situations have in common is that the uncertainty in the aggregated total
depends strongly on how the uncertainty in the individual elements is correlated. Negat-
ive correlation tends to cancel out individual variations when aggregated, while positive
correlations tend to exaggerate them (Groen and Heijungs, 2017; Heijungs et al., 2019;
Solazzo et al., 2021). Ignoring correlations has direct implications on decision-making,
for example when decision makers have to decide between two correlated uncertain vari-
ables (such as comparing the impact of renewable e-fuels vs. hydrogen to fuel ships),
as well as implications on the results of models which use these correlated variables as
inputs (Figure 1).

Figure 2 illustrates this, showing two disaggregated random variables A and B in two
extreme cases, one with a strong positive correlation (top row) and one with a strong
negative correlation (bottom row). Ignoring correlations could lead to misleading con-
clusions about the likelihood of one option being preferable to another: Whereas in the
top row the marginal distributions of A and B look almost identical, in the bottom case
the marginal distributions of A and B (and the sample means and percentiles) are more
distinct, suggesting that B is expected to be larger. In fact, due to the strong positive cor-
relations (top row) the probability that B is larger A is actually 100% (that is, even though
both A and B vary, B > A for all N draws), while the negative correlations (bottom row)
lead to a probability that B is larger than A of only 64%. When correlated variables are
used as inputs in another model, the uncertainty of the results of this model might be
biased. In the simple case of summing two correlated random variables, the uncertainty
of that aggregate is overestimated in case of negative correlations and underestimated in
case of positive correlations (see Figure 2, right column).
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Figure 1: A schematic representation of the two challenges this paper addresses to over-
come two common problems that might arise when ignoring correlations.

In general, the direction and size of the error will depend on the details of the problem,
but as an illustrative real-world example, an analysis of disaggregation uncertainty in an
IOA of the carbon footprint of Germany (in the Supplementary Information, Section
D) shows that neglecting correlations can cause the level of uncertainty (measured as
standard deviation) in individual sector’s carbon multiplier to deviate by -34 to +130%,
and the uncertainty in the national footprint to be overestimated by 46%.

As illustrated in Figure 1 there are two challenges to overcome to avoid making these
errors in the uncertainty quantification of IE models:

1. Modelers must keep track of correlations introduced into model outputs due to the
model structure and assumptions; and

2. Modelers must communicate correlations in model outputs, and make use of in-
formation about any correlations in model input data.

For the first problem, while in general there could be many reasons for correlations
to be present in model results, we focus on a very common case for IE models: when
researchers have to deal with the challenge of disaggregating single data points because
the data is unavailable at the required resolution. This usually involves splitting one data
point into several disaggregates using additional proxy or auxiliary data (both terms are
used interchangeably in this article) or assumptions, and is a challenge common in all
three of the model families dominant in IE research (Figure 3). While a few IE stud-
ies (reviewed in more detail in Section 2) use Dirichlet or other probability distributions
and Monte Carlo sampling to track the correlations and uncertainty introduced during
disaggregation (Lupton and Allwood, 2018; Paoli et al., 2018; Helbig et al., 2022; Char-
pentier Poncelet et al., 2022), it is not widespread in IE practice. Moreover, the basic
methods applied in the literature do not handle various technical cases that are important
in real-world problems, such as when some subset of the disaggregated shares is more
uncertain than others, or when information about some shares and their uncertainty is
missing altogether.
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Figure 2: A illustrative example showing two random variables A and B that are strongly
positively (top row) and negatively (bottom row) correlated. Both A and B are the result
of disaggregating a common aggregate, with different assumptions about the uncertainty
in the shares and the initial aggregated total. Left column shows the marginal histograms
of A and B and middle column the correlation between them. Even though in the top
case the means and 2.5th/97th percentiles between A and B are very similar (45 vs. 55
for the means) due to the strong positive correlation, for all N = 10000 draws B is larger
than A (i.e. P(B > A) = 1). In contrast, even though in the bottom case the means of A
and B are the same as above, the negative correlations lead to a much lower probability
that B is larger than A. The right column illustrate Problem I from Figure 1(a): The
error introduced in the results of Model 2 when the correlations of the results of Model 1
are ignored. Ignoring negative correlations leads to overestimating uncertainties (bottom
row) while ignoring positive correlations tend to underestimate uncertainties (top row).
To check the code to reproduce the figures and the data behind it, please see the “Data
and code availability” statement.
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We therefore present in this paper a review of current practices and limitations for
dealing with uncertainty due to disaggregation (Section 2), and introduce the theory and
a practical guide that IE modelers can use to track correlation in model outputs, in the
context of MFA, LCA or IOA (Section 3).

For the second problem — communicating information about correlations in model
outputs — we are not aware of any specific guidance on this for IE modelers. We therefore
discuss the ways that correlation in uncertain model results may be communicated, with
different trade-offs between complexity, storage space and accuracy, and the effect on
subsequent analysis if correlations are not accurately preserved (Section 4).

Finally, we discuss the relevance of our presented approach for IE researchers and
show its limitations and avenues for further research and refinements (Section 5).

2 Background and literature review

2.1 Data disaggregation under uncertainty

Consider the examples shown in Figure 3. All have in common that we have an aggregate
flow yo, which is known, such as the total amount of steel manufactured in a given time
and geography. What we do not know, but are interested in, are the K disaggregate
flows w1, ..., yx (also called components), such as the different end-use sectors where
the manufactured steel ends up. Even though we do not know the values of v, ..., yx,
our model structures in IE demand that the individual components ¥;’s need to sum to
the known aggregate flow y, to respect the mass-, energy-, stoichiometric-, or economic
balance of the model:

K
Y= ui )
=1

Equation 1 is also called an accounting identity.

To get estimates of the disaggregate flows, one usually uses proxy data to calculate
shares (ratios/fractions) of the respective disaggregate units xy, ..., zx. In order to al-
locate the entire aggregate flow without leaving any residual (thus to respect the system
balance), those shares need to sum to one:

K
d =1 )
i=1

Disaggregate flows are calculated as

Y; = xiyo,W c {1, ,K} (3)

In the MFA example above, proxy data might be monetary steel purchases by the car
manufacturing and construction sectors. The LCA modeler might take the energy content
or economic value of the three functional flows as proxies for allocation, or production
volumes to split aggregated measurements of energy use across processes (we discuss
later the difference between uncertainty in normative choices such as allocation, and
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Figure 3: (Simplified) examples of data disaggregation from the three model families
dominant in Industrial Ecology research. For example, an MFA modeler interested in
the flow of steel through the economy must know the fractions of steel that end in cars
and buildings, respectively, for a given time and location (Streeck et al., 2023). An LCA
modeler assessing the environmental impacts of a plastic incineration plant for combined
heat and electricity production needs to allocate CO,-emissions to different functional
flows, i.e., to the two products leaving the plant (electricity and heat) and the waste
product entering the plant (plastic waste) (Guinée et al., 2021), or when measured total
electricity consumed in a factory must be shared between the modeled sub-processes.
Meanwhile, compilers of environmentally-extended IO databases must allocate CO»-
emissions from road transport to the IO sectors (Schulte et al., 2024).

disaggregation of empirical data). Meanwhile, the IO modeler might use the economic
size of the different sectors.

When modelers aim to understand the robustness or uncertainty of their models bey-
ond just average values (or point estimates), they have to use uncertainty propagation,
assessing how uncertainty propagates from model inputs to model outputs.! Two op-
tions for propagating uncertainty exist: analytical or simulation-/sampling-based meth-
ods. Analytical uncertainty propagation usually involves using calculus, “applying a
local derivative of the mathematical function that specifies how inputs are transformed
into outputs” (Heijungs and Lenzen, 2014). This approach requires a good understand-
ing of the processes involved in the model and becomes inaccurate for large uncertainties
and/or non-linear models.

Thus, in IE, researchers often apply simulation or sampling-based methods. The
most commonly used method is Monte-Carlo (MC) sampling. MC sampling methods
propagate uncertainty from model inputs to outputs by repeatedly and randomly sampling
from the probability distribution of the model inputs and calculating the model results for
each iteration. This results in a sample of model results from which several summary
statistics such as mean, standard deviation, quantiles, or the covariance matrix can be
computed. This method is more flexible than the analytical method but at the expense of
additional computational efforts. Because the complexity of models in IE requires this
flexibility, we base this paper on the sampling methods, although we note the problem
of estimating the uncertainty of disaggregates can also be approached analytically (Jung
et al., 2014) or based on numerical approximations (Lenzen and Murray, 2010; Min and

'Note that in this article, we only deal with “parameter uncertainty.” For other types of uncertainty
common in IE, please refer to Huijbregts (1998); Laner et al. (2014)
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Rao, 2018; Rodrigues, 2016). We provide a literature review and a comparison between
these different approaches in the Supporting Information.

Uncertainty propagation is straightforward when applied to data aggregation espe-
cially when sampling-based methods are used: the components are simply added together
for each sample to produce the samples of the aggregate. In the case of data disaggrega-
tion, however, accurately dealing with uncertainty becomes significantly more complex.
In particular, the specification of the probability distributions to draw from becomes more
challenging. This complexity arises primarily from the accounting identity (Equation 1)
introducing inherent correlations between the disaggregates. Ignoring those correlations,
in turn, can lead to under- or overestimating uncertainty (Groen and Heijungs, 2017;
Heijungs et al., 2019; Solazzo et al., 2021). The accounting identity constraint naturally
introduces a negative correlation between the x;’s and either positive or negative correl-
ations between the disaggregates y;’s depending on the size of the uncertainties of the
aggregates and the shares (Rodrigues, 2016).

2.2 Usage of the Dirichlet distribution to sample shares

Although data disaggregation is common in IE research, only few studies assess the un-
certainty of this disaggregation. Of those that do, most sample the shares from the Dirich-
let distribution (e.g. Meyer et al., 2017; Paoli et al., 2018; Lupton and Allwood, 2018;
Helbig et al., 2022; Charpentier Poncelet et al., 2022; Kim et al., 2025). A few stud-
ies used different distributions to sample shares, e.g. Bornhoft et al. (2016) who used
a normalized uniform distribution, whose shortcomings have already been discussed in
Lupton and Allwood (2018). The Dirichlet distribution, in turn, is noted for its practical
suitability in sampling shares due to its property of samples summing to one (Igos et al.,
2019). Moreover, samples generated from the Dirichlet distribution are naturally negat-
ively correlated. It is important to note that those correlations are solely determined by
the properties of the data. Hence, the correlations we discuss in the following solely refer
to the statistical correlations needed to ensure results are consistent with the accounting
identities that govern them. Whenever modelers have prior estimates of correlations (e.g.
from expert knowledge), “these alternative priors should be used for as long as they are
properly justified and mutually consistent” (Rodrigues, 2016).

While few in number, the IE studies using the Dirichlet distribution highlight the ver-
satility of its use cases. Helbig et al. (2022) apply the Dirichlet distribution to sample
allocation parameters of their dynamic MFA model to trace the fate of seven metals at a
global level. In a similar context, Charpentier Poncelet et al. (2022) use the Dirichlet dis-
tribution to estimate the uncertainty from their model on estimating losses and lifetimes
of metals in the economy. In their uncertainty analysis on useful energy balances for the
UK, Paoli et al. (2018) use the Dirichlet distribution to randomly allocate energy flows to
energy end-uses. In their Bayesian MFA study Lupton and Allwood (2018) define prior
distributions for transfer coefficients (i.e. “the fractions of a process’s output that flows to
different destinations”) using Dirichlet distributions. Meyer et al. (2017) study different
techniques to include noise damage in LCA. The authors use the Dirichlet distribution
to sample all model parameters representing a percentage in their uncertainty analysis.
Recently, Kim et al. (2025) use the Dirichlet distribution to sample relative shares of
activities in Life Cycle Inventory data that must sum to a whole — such as different power
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sources 1n national electricity mixes or inputs in implicit market datasets. Santos et al.
(2022) use the Dirichlet distribution in their stochastic IO analysis to sample the columns
of the technology matrix A.

However, the way the Dirichlet distribution has been used to sample variables with
a “sum-to-one-constraint” so far in IE research has two major limitations, as outlined in
the following.

2.2.1 Choosing parameters for the Dirichlet distribution

The first limitation relates to how the parameters of the Dirichlet distribution are chosen.
The Dirichlet distribution is parameterized by a vector of positive-valued parameters o =
(a1, ..., ak) such that Zfi . &; = 1, and a positive-valued concentration parameter y >
0.2

Most existing studies choose the concentration parameter y of the Dirichlet distribu-
tion in ways that either ignore available uncertainty information or distort it. Yet, since vy
controls how spread out the disaggregated shares can be (see Figure 4), the choice of the
~ parameter might have a large effect on the overall uncertainty of the model results.

Two problematic approaches dominate in the literature. First, some studies make ar-
bitrary choices: Santos et al. (2022) simply set vy to 1, while Helbig et al. (2022) tests three
arbitrary values without justification. Second, other studies compromise the uncertainty
information for some components to match targets for others. Paoli et al. (2018) para-
meterize the Dirichlet distribution in such a way to “match the uncertainty in the largest
part [i.e. share] to the specified value” acknowledging this “exaggerate[s] the uncertainty
of small parts”. Similarly, Lupton and Allwood (2018) determine the concentration para-
meter vy to give a desired variance for one of the disaggregates, preventing independent
control over other components’ uncertainties. Going one step further, Kim et al. (2025)
optimize y (which they call \) for exchanges “with higher production volume shares” by
first estimating how much uncertainty each component would need on its own and then
setting ~y to the simple average of those “uncertainty scores” for the exchanges that are
larger than the market average. Meyer et al. (2017) (implicitly) choose the ~ parameter
so that the Dirichlet distributed shares exhibit exogenously assumed standard deviations.

Only Charpentier Poncelet et al. (2022) attempt a systematic approach using pedigree
matrices, but apply the same variance measure to all shares regardless of their individual
uncertainty characteristics.

Against this background, a principled method is needed to choosing the parameters
of a Dirichlet distribution.

2.2.2 Lack of flexibility of the Dirichlet distribution

The second limitation of the sampling-based approach using the standard Dirichlet dis-
tribution is its lack of flexibility. The standard Dirichlet distribution does not allow for
cases in which the uncertainty differs between the components, nor for cases with par-
tially missing information on the components. However, outside IE research approaches

Note that in the literature the parameterization of the Dirichlet distribution differs. Alternative para-
meterizations found are listed in the Supporting Information
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have been suggested and applied to increase the flexibility of the standard Dirichlet distri-
bution. To allow for handling different uncertainties between components, several gener-
alizations of the Dirichlet distribution have been suggested (Plessis et al., 2010; Lingwall
et al., 2008). To address partially missing information, several forms of hybrid Dirichlet
sampling procedures have been suggested (Plessis et al., 2010; Luedeker, 2022; Ng et al.,
2011).

2.3 Summary of gaps in current approaches

To summarize, we identify the following key gaps in the current approaches and imple-
mentation of uncertainty analysis involving data disaggregation:

* First, even though data disaggregation is a common problem faced by IE schol-
ars, yet despite its apparent advantages within the sampling based approach, the
Dirichlet distribution has rarely been applied in IE research to estimate model un-
certainty. This highlights the need for an clear and easy to follow recipe on how to
use the Dirichlet distribution within IE research.

* Second, the few IE studies using a Dirichlet distribution to sample variables with
a “sum-to-one-constraint” rely on somewhat arbitrary assumptions concerning se-
lecting the concentration parameter . A more principled method for choosing
parameter values in situations with incomplete information is therefore needed.

* Third, the sampling approach based on the standard Dirichlet distribution lacks
flexibility with regard to mixed or partially missing information.

3 Practical approach to modeling uncertainty in disag-
gregation

Against those gaps in current approaches, in the following we introduce the theory and a
practical guide that IE modelers can use to track correlations stemming from data disag-
gregation in their models. To ease the application by IE modelers, we implemented the
proposed approach in an R and Python package, respectively (see links below).

3.1 Notation

We use uppercase letters to denote a random variable. Hence, the aggregate is denoted
Yo, the disaggregates (components) Y7, ..., Yk, and the shares/fractions X1, ..., Xx. We
use x; and y; to denote a particular realization of a random variable. Aggregate variables
or realizations thereof are denoted with a subscript 0, such as X,. Disaggregates and
shares/fractions with a subscript 7 € 1, ..., K, e.g., X; or X3. Further, we denote the best-
guess (in the form of the expected value) of variable 7 as m,; and the uncertainty (in the
form of a standard deviation) as s;.
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3.2 General procedure

Uncertainty propagation using MC requires first to assign probability distributions to the
model inputs. In a process that has the form illustrated in Figure 3 (i.e., which involves
data disaggregation), there is one explicit model input Y, and K implicit model inputs in
the form of the vector of best-guesses of the shares m = (my, ...., mx) stemming from
proxy data.

By repeatedly (N-times) and randomly sampling from those probability distributions,
we can generate sets of N random variants of both model variables {3}, 42, ..., 4} and
{x!, 22, ..., x"}. Using Equation 3 we calculate N random samples of the K disaggreg-

ates {yl, ..., yN L ys, sy} oy, o UR L

3.3 Assigning probability distributions to the model inputs

The first step in uncertainty analysis is assigning probability distributions to the model
inputs. This would be straightforward if the modeler had good statistical information
on the ‘real’ distribution of the model input. In that situation this information should
of course be used directly, but in many cases only more limited information is available
(e.g., the mean, standard deviation, lower/upper bounds), which must then be used to
choose an assumed probability distribution. To make this choice as objective as pos-
sible, Jaynes (1957) introduced the Maximum Entropy (MaxEnt) principle. According
to Jaynes (1957), among all probability distributions that align with a given set of con-
straints and information, the one with the maximum entropy should be selected. The
MaxEnt principle implies that the chosen distribution is maximally uninformative about
what is unknown and maximally informative about what is known. Consequently, the
MaxEnt distribution provides the least biased estimation consistent with the provided
constraints and information. In this paper, we aim to adhere to the MaxEnt principle
where possible.

We cover different cases that differ in the kind of information a modeler has con-
cerning the aggregate variable (four cases, Table 1) and the shares (four cases, Table 1),
which represent the most common cases from our own work and the IE literature.

3.3.1 Aggregate

Choosing the MaxEnt distribution for an isolated datum such as the aggregate Yj is
straightforward and well-studied. Others have done the theoretical derivation of the
MaxEnt distributions for all of the cases covered in this work, and we refer to the ex-
isting literature here. Table 1 lists the four cases covered in this paper, differing in terms
of information available along with their MaxEnt distribution. We consider cases where
modelers have information on upper and/or lower bounds (ay and by, respectively), a
best-guess (or expectation) mg and/or an uncertainty estimate in the form of the standard
deviation sy. Since variables in IE modeling often reflect physical or monetary flows,
they are usually constrained to be positive. In that case the lognormal distribution is a
common option in IE research (Qin and Suh, 2017; Laner et al., 2014). The lognormal
distribution is the MaxEnt distribution when the mean and the variance of the natural
logarithm of a random variable X are known.

10



318 We note that in IE research a variety of other distributions can and are used for isol-
a9 ated random variables (Heijungs, 2024). The choice of distribution should always be
a0 guided by knowledge we have about our data at hand. In particular, if a researcher has
221 knowledge of the distribution of the aggregate then they should use this instead of the
322 MaxEnt solution listed here.

s2s 3.3.2 Shares

s2« For the shares, we consider four different cases which differ in the amount of information
s2s available to the modeler (see Table 1):

326 1. No specific information is available apart from the number of processes (K) an
327 aggregate quantity is linked to.

328 2. Some proxy or auxiliary data exist, allowing the modeler to calculate the best guess
329 m of the shares.

330 3. Information on both the shares’ best-guesses m and uncertainties on these ‘best-
331 guesses’ s.

332 4. Incomplete information on the shares’ best-guesses and/or uncertainties (for ex-
333 ample, we might only have information on the uncertainty of one component).

334 Finding probability distributions for these four cases is more challenging than for the

335 aggregate quantity. As seen in the literature review, the multivariate Dirichlet distribution
ass 1S a good choice for sampling shares because samples from the Dirichlet distribution
37 always sum to one. Moreover, Vlad et al. (2001) showed that the Dirichlet distribution is
sss  the distribution with the maximum entropy for the constraints of positivity and sum-to-
s3e one. For the third and fourth cases, however, the standard Dirichlet distribution lacks the
a0 flexibility required to introduce different uncertainties for each disaggregate item. That
a1 1s why we use a generalized variant of the Dirichlet distribution (Plessis et al., 2010) for
a2 case three and a hybrid Dirichlet distribution for case four. However, for these last two
as  cases, we diverge from the MaxEnt principle as we are neither aware of any work on
a4 finding the MaxEnt distribution given the information and constraints, nor were we able
a5 to find the solution (if there is any) by ourselves within the scope of this paper.

ss The standard Dirichlet distribution

a7 Formally expressed, the Dirichlet distribution describes /' > 2 random variables X7, ..., Xk
s such that each z; € (0,1) and Zfil x; = 1. In its most commonly used version, the Di-
a9 richlet distribution is parameterized as follows:

X1y ey Tk ~ Dir*(py, ..., K, 4)
350 where g = (p1, ..., k) is a vector of K positive reals.
351 The expected value is given by
Hi
BX)| = —— (5)
Zk:1 Hi

11
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Table 1: The cases this paper addresses, differing in terms of the amount of information
available on both aggregate data and shares, and their respective probability distributions.
The aggregate cases and their MaxEnt probability distributions are based on Rodrigues
(2016), while the share cases and their probability distributions are based on Plessis et al.
(2010). For aggregate cases: i = Mean of X, o = Standard deviation of X, u*/o* =
Mean/Standard deviation of [n.X, ¢ = minimum value of X, b = maximum value of X.
For share cases: Dir = standard Dirichlet distribution, Dirg = generalized Dirichlet dis-
tribution, Dirh = hybrid Dirichlet distribution, & = Mean of sector shares/branching
ratios (vector), 3 = Standard deviations of sector shares/branching ratios (vector), v =
concentration parameter, v* = fitted concentration parameter to MaxEnt. {1/K } de-
notes a vector of (1/K,1/K,...) of size K.

case id Information available Probability distribution
aggregate 1 ag, by Uni f(ag, bo)

aggregate 2 My, So Norm(p = mg, 0 = $g)
aggregate 3 mg,ap =0 Exp(A =1/my)

aggregate 4 mp, s§ Lognorm(p* = m§, 0* = s§)
shares 1 K Dir(a ={1/K}k;v=K)
shares 2 mi, ..., Mg Dir(a = m;y =~*)

shares 3 M1, ..., MK, S1y...,SK Dirg(m; s)

shares 4 my,...,NA, ..., mg;s1,...,NA, ..., sg Dirh(m;s)

Thereby, > 11; provides the “concentration” of the variables. Since we want to model
this concentration explicitly in the paper, we use a slightly modified version of the Di-
richlet distribution which makes the concentration parameter vy explicit:

x1, ..., xg ~ Dir(aq, ..., ag; ), (6)

which is parameterized by a vector of positive-valued parameters o = («, ..., ak)
such that ) fi 1 @; = 1, and an additional positive-valued concentration parameter v > 0.
Both parameterization forms yield the same distribution if

Hi = ’YOéZ',\V/'l. S {17 7K} (7)

The Dirichlet distribution Dur has the useful property that the expected values for
each variable X; equal the parameter value «;:

E[X;] = oy, Vi € {1,...,K}. (8)

The concentration parameter 7, on the other hand, controls the variance(s) of X =
(X1, ..., Xk). This is illustrated in Figure 4 showing histograms of 10000 Dirichlet dis-
tributed random numbers with the same average sector shares a = (0.1,0.3,0.6) but
with different values of 7. From that, we see that the variance decreases with increasing
~. In other words, the distributions become more concentrated with higher values of ~.

Since for cases 1 and 2 we assume not to know the uncertainties of the shares, we
apply the MaxEnt principle to determine the value of  that maximizes the entropy of the
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Figure 4: Histograms of shares sampled from Dirichlet distributions with three different
values of v (N = 10000, o = (0.1,0.3,0.6)). v = 6.36 marks the MaxEnt solution for
that specific case. To check the code to reproduce the figure and the data behind it, please
see the “Data and code availability” statement.

Dirichlet distribution given the m provided (more details in Section B.4 of the Supporting
Information). For case 1, which assumes no knowledge of shares, the MaxEnt Dirichlet
distribution is

1
Dir(a = {E}KW:K), )

where {%} & denotes a vector of only +=’s of size K. This distribution is called a flat
Dirichlet or the maximal uninformative Dirichlet.

In the second case, the modeler has some proxy or auxiliary data to calculate a best-
guess of the shares. In this case, optimizing the ~y to find the Dirichlet distribution with
the maximum entropy depends on the values of the cx. Hence, there is not one unique
solution like in case 1. We propose an optimization procedure to find 4 (the value for
~ that maximizes the entropy of the Dirichlet distribution) which is explained further in
Section B.4 of the Supporting Information.

The Generalized Dirichlet distribution

With the ~y parameter of the standard Dirichlet distribution, we can only adjust the con-
centration of all sampled shares X simultaneously. Case 3, however, in which we have
not only information on the shares but also on the uncertainty of those shares, which can
differ between the different components, demands more flexibility. For this case, several
generalizations of the Dirichlet distribution have been proposed. Here, we apply the one
formulated by Lingwall et al. (2008) which is parameterized as:

x1, ..., xg ~ Dirg(aq, ..., ax; b1, ..., Px), (10)

13



385

386

388

389

390

391

392

393

394

395

396

397

398

399

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

where, following the notation from the the standard Dirichlet distribution above, a =
(a1, ..., ak) is a vector with the best estimates of the shares and 3 = (f3, ..., Ok) is an
additional vector of positive-valued parameters, describing the input uncertainties on the
«’s. While the PDF is given in Lingwall et al. (2008, equation 2 and 3), we use the
sampling algorithm provided in Appendix 2 of Plessis et al. (2010) to generate random
numbers from this distribution. To do so one first defines two parameters: a shape para-
meter o and a scale parameter 3"

2
o = (%) and 8° = % , (11)

which are then used to generate K independent samples 71, Zo, ..., Tk of length N by
sampling from gamma distributions:

B*a: aj—=1 _pB*g,
* B = 2 S i T 12
gamma(al ) 51 ) F(Oé;k) Ty € ) ( )
which are then normalised via R
Ty = (13)

PR
to adhere to the ‘sum-to-one’ constraint ) , z; = 1.

As already noted by Lingwall et al. (2008), due to the sum-to-one constraint, the
uncertainty of the sampled shares x1, ..., xx will, in general, be close but not exactly
equal to the desired uncertainty [y, ..., Ok.

3.3.3 The hybrid Dirichlet distribution

In some cases, however, a modeler only has partial information on a composition’s best
guesses or uncertainties. For example, we might only have information on the best-
guesses of some components, while for others not at all. Here, we propose and imple-
ment a hybrid Dirichlet sampling approach, which shares the same general form as the
generalized Dirichlet:

fﬂl,...,ﬂfKND’i?"h(O&l,...,&K;ﬂl,...,ﬁK), (14)

but allows for missing elements both in « and 3.

In this hybrid Dirichlet approach, the disaggregates are divided into different parts
based on the available information, each of which is then sampled semi-independently
before all parts are combined again. The hybrid Dirichlet algorithm is described by the
following stepwise procedure:

1. Handling missing means: If elements in o are missing, the remaining mass is
evenly distributed among the missing components so that > «o; = 1.

2. Truncated Beta draw for the components with SDs: All components ¢ for which
an uncertainty estimate (3; is available are independently sampled from a Beta dis-
tribution with shape parameters «; and 3;, resulting in an array of size (NN, Ng),
where N is the number of components we have a 3 value for. Next we reject and
resample any row whose sum exceeds 1.
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Figure 5: The overall procedure for an illustrative example with two simple models:
Model 1 which disaggregates total steel consumed for vehicle manufacturing by vehicle
type (ICE, BEV, and HBEV) based on production volume proxies. Those disaggregated
figures are then used by Model 2 to estimate the life cycle impacts from steel production
for vehicle manufacturing.

total steel consumption
for vehicle manufacturing

3. Bias check and automatic downgrade (iterative): The rejection criteria in Step 2
can lead to a truncation of some Beta distributions which have either a high «; (high
share of the total) or a high ; (high uncertainty). The truncation of the distribution
tail leads to bias in the exPectation value. Therefore we compute the relative bias
as bias;(X;, o) = |x’ <l for all components drawn in Step 2. Whenever bias;
exceeds the user-set tolerance (which is 0.1 in our case), ignore the corresponding
B; (set to NA) and repeat Steps 2—3. The loop stops as soon as every Beta-sampled

component satisfies the bias criterion or no 3; remain.

4. Maximum-entropy Dirichlet draw for the remainder: All remaining compon-
ents, whose ; is NA, from a standard Dirichlet distribution with concentration ~y
chosen so that the entropy of the distribution is maximized.

5. Row-wise rescaling: Finally, the Dirichlet part (leaving the Beta draws untouched)
is rescaled so that each sample satisfies Zfil x; = 1.

With this approach we make sure that the possible bias caused by the rejection of
Beta draws in step 2 stays within an acceptable — user defined — range.

So, this methods gives a practical solution for sampling from Dirichlet distributions
with partial information with reasonable parameters, falling back gracefully to a feasible
distribution when the exact distribution cannot be sampled.

3.3.4 A simple example

Having introduced the theory of how to sample disaggregates, we next apply the pro-
cedure to a very simple example that follows the schema introduced in Figure 1 in the
introduction. We assume that an IE researcher has data on total steel consumption for
vehicle manufacturing but needs to disaggregate this figure by vehicle type (ICE, BEV,
and HBEV) based on production volume proxies (Figure 5).

In Figure 6 we show three different scenarios, which differ in terms of what inform-
ation is available on the aggregate (total steel consumption) and the shares (by vehicle
type). In all three scenarios the modeler has a best-guess and standard deviation for the
aggregate. For the shares, scenario 1 depicts the case that only best-guesses are available,
scenario 2 shows the case where for one component both a best guess and a standard
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deviation is available while for the other two no information at all is available. Lastly,
scenario 3 depicts the case where best-guesses and standard deviations are available for
all components.

Following the procedure described above, the aggregates and shares are sampled from
the respective distributions. In scenario 1 the samples of the shares samples are generated
from a standard Dirichlet distribution with the ~y fitted for MaxEnt, in scenario 2 from a
hybrid Dirichlet and in scenario 3 from a generalized Dirichlet. The aggregate samples
come in all three cases from a lognormal distribution.

In the the R and Python packages which accompany this paper the choice of distribu-
tion for the aggregate and the shares, the determination of the parameters (in particular
~v*), and the sampling itself is all automated so that the user only has to specify the in-
formation available.

As can be seen in the right column of Figure 6, the three different configurations lead
to very distinct correlation patterns. In scenario 1 a low uncertainty of the aggregate
with a maximal wide uncertainty of the shares leads to negative correlations between
all components. In scenario 2 a higher uncertainty of the aggregate with a mix of low
uncertainty of one component (ICE) and a high uncertainty of the other two, leads to a
slightly negative correlation between BEV and HBEV and positive correlations between
the ICE and BEV and ICE and HBEV. In scenario 3 a high uncertainty of the aggregate
together with a very small uncertainty on the shares leads to strong positive correlations
between the shares of all three vehicle types.

4 On the challenge of sharing correlated data

So far, we have discussed generating samples for disaggregates based on the informa-
tion provided. Integrating this sampling approach into uncertainty propagation allows
modelers to obtain samples of their model results. The challenge then becomes how to
communicate and share those results that include uncertainty effectively. Unlike determ-
inistic results, which can be shared as a simple number (if results are 1-dimensional) or
as (multidimensional) numeric arrays, Monte Carlo (MC) samples are more complex.
While sharing full MC samples provides complete information (Lesage et al., 2018), it
can lead to data storage issues, especially for large models like Multi-Regional Input-
Output (MRIO) databases.

To address this, modelers often share summary statistics of the sample, typically
mean and standard deviation (Lenzen et al., 2013). Researchers can use these statist-
ics to propagate uncertainty in their subsequent analyses by independently sampling the
different elements of the initial model results. Independent sampling is usually carried
out using univariate distributions where each variable is treated separately, ignoring how
they might be related to each other.

However, if data disaggregation is involved at any step of the model, samples of the
elements of the model results are naturally correlated (Figure 6). Hence, when sharing
only the mean and standard deviation, one loses information on correlations between
model elements. As already pointed out in the introduction, this can lead to mislead-
ing conclusions about the likelihood of one option being preferable to another, and to
inconsistencies when reconstructing disaggregates, potentially over- or underestimating
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Figure 6: Three different scenarios for the example from Figure 5, which differ in terms
of what information is available on the aggregate (total steel consumption) and the shares
(by vehicle type). Each scenario leads to different correlation patterns. To check the code
to reproduce the figure and the data behind it, please see the “Data and code availability”
statement.
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aggregate uncertainty.

Let us illustrate this with the example from before on steel consumed by vehicle type.
Imagine a second modeler using the results from Model 1 (the steel consumption by
vehicle type) to calculate the life cycle emissions from steel production for vehicle man-
ufacturing, as a weighted average across the different vehicle types (let’s call this Model
2). Depending on the uncertainty information shared by Modeler 1 and the correlation
between the results from Model 1 (end use flows of steel to vehicle type), the uncertainty
of the average life cycle emissions (Model 2) may be over- or underestimated. Figure
7, shows the results of Model 2 for the different correlation scenarios from the above
example (Figure 6). Each column in Figure 7 corresponds to a correlation scenario (neg-
ative, mixed, positive) and shows the uncertainty distributions for three different ways of
communicating the uncertainty in the results from Model 1.

First, the black histograms/boxplots show the uncertainty of the average life cycle
emissions if the full uncertainty distributions from the MC sampling in Model 1 are used
(assuming they were shared by Modeler 1). In the following, we will consider this as the
“truth’.

Second, the yellow histograms/boxplots in Figure 7 show the case in which only the
mean and standard deviation of the end use flows are shared and used in a univariate
Gamma distribution to sample from in Model 2. We see that if correlations are negative
as in scenario 1, neglecting them leads to an overestimation, and vice versa for positive
correlations (scenario 3). Ignoring the mixed correlations from scenario 2 leads to no
particular bias.

To improve the results for the cases when model results are correlated, sharing the
covariance matrix along with the Mean values provides more complete information com-
pared to sharing the univariate standard deviations. The Mean values and the covari-
ance matrix can be fed into a multivariate distribution, which enables all elements to be
sampled simultaneously, taking correlations into account. This case is illustrated as the
third option in blue in Figure 7, which show results where the values of the end use flows
from Model 1 were sampled from a multivariate gamma distribution using the means and
covariance matrix. The Gamma distribution was chosen because for our data, the values
are always positive, and this distribution performed better than alternatives in our tests
(see the Supporting Information).

We can see that this “intermediate” approach better captures the relationships between
variables than independent sampling, with less data needed than sharing the full set of
sampled values, though it slightly overestimates aggregate uncertainty when the disag-
gregates are negatively correlated (scenario 1). This happens because gamma distribu-
tions, unlike normal distributions, have mathematical constraints that make it difficult
to model strong negative relationships between positive-valued variables (Minhajuddin
et al., 2004).

To summarize, if sampled model results contain correlations, the best option is al-
ways to share the full uncertainty samples from the Monte Carlo Simulation to preserve
all information. If that is not feasible due to storage or other constraints, the second-best
option is to share the covariance matrix and mean or median values. Additionally, model-
ers could provide an analysis on which multivariate distribution fits their data best (like
we did in the Supporting Information where we compared three different distributions),
and estimate the error introduced when re-sampling. The least best option, which can
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Figure 7: A comparison of the uncertainty estimation in Model 2, for different levels
of available information on the uncertainty of the input data (output of Model 1 in the
example in Figure 6). The three columns show the different correlation scenarios and
the different color histograms (a) represent the uncertainty distributions for the results
of Model 2 for each level of available uncertainty information. The black case assumes
that the full samples from the Monte Carlo simulation in Model 1 have been shared, for
the yellow case only the means and SDs were used (sampled from a univariate Gamma
distribution), and the blue case assumes the availability of the means and covariance
matrix (sampled from a multivariate Gamma distribution. The Boxplots (b) show the
median (middle bar), 25th and 75th percentiles (box), and 2.5th and 97.5th (whiskers) of
the distributions in (a). Note: The x-axis of the Scenario 2 plot has been cut at 300 due to
the distributions’ long tails extending until almost 1000. To check the code to reproduce
the figure and the data behind it, please see the “Data and code availability” statement.
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lead to a serious misestimation of model uncertainties, is to only share the mean and SD,
without any information on correlations.

5 Discussion and conclusion

This paper presents an approach to conducting an uncertainty analysis for models that
include data disaggregation. The approach builds on different variants of the Dirichlet
distribution to sample shares with the inherent sum-to-one property. The approach is
flexible concerning information available on the input data. It can handle different levels
of available information, both on the aggregate and the shares to sample from, while
inherently accounting for statistical correlations.

Regarding sharing and reusing model results involving data disaggregation, we show
that ignoring correlations can theoretically lead to both under- and overestimation of un-
certainty. The actual importance of neglecting correlations varies between models; while
in the main paper we have used simple examples to illustrate the issues and solutions, a
more realistic case study on compiling German CO; satellite accounts shows that it also
makes substantial differences in practice to the level of uncertainty estimated, most often
leading to overestimation. Sharing and using the covariance matrix in addition to the
sample mean leads to considerably more accurate results. However, inaccuracies persist,
at least when the data is constrained (e.g., to be non-negative), since sampling from a
multivariate distribution, which is only defined for a constrained space, fails in perfectly
matching negative correlations. Against this background, we recommend sharing and
using the entire MC sample to retain all information on data dependencies. If not pos-
sible due to constrained storage capacity, we recommend sharing at least the mean and
covariance matrices so that succeeding users of the model results can resample the data
from a multivariate distribution.

Further research could focus on identifying those elements that contribute most to the
overall model uncertainty, e.g., by applying a global sensitivity analysis (Kim et al., 2022)
or alternative approaches (Qin and Suh, 2021) so that data gathering can be prioritized
more efficiently.

Building on the core sampling methods we present here, there are three areas where
further development would be useful. First, the sampling methods in this paper reflect
“statistical” correlations, in the sense that they are only determined by the properties of
the data. There can also be “real-world” (physical) correlations, i.e., those that exist due
to dependencies present in the real world, such as the relation between heat and electri-
city produced by a combined heat power plant. Further developments could include prior
information on such “physical” correlations between individual shares or an aggregate
and one/several shares. This would involve a more flexible alternative to the Dirichlet
distribution, such as the logistic-normal distributions (Aitchison and Shen, 1980). How-
ever, generating random numbers from a multivariate logistic-normal distribution so that
the sample means equals the best-guesses on the shares is hardly possible since there is
no analytical for the mean or the SD (though there might be ways to solve this numeric-
ally). Another option to include prior correlations would be sampling based on the Monte
Carlo Markov Chain (MCMC) approach (Andrieu et al., 2003), which, however, is very
computationally intensive. Moreover, we consider that IE modelers very rarely possess
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information on those dependencies. Second, although our analysis is mainly based on
the principle of MaxEnt, we deviate from it in two cases: Neither for the case where
we assume information on both best-guesses and uncertainties of the shares nor for the
case where we assume partly missing information, we cannot exclude that there exist
other distributions than the one we proposed (generalized/hybrid Dirichlet) that have a
higher entropy given the information and constraints. Future work could be carried out
on refining those sampling approaches.

Third, our algorithm for sampling from Dirichlet distributions with partial informa-
tion is approximate, and while it works well for parameter values likely to be encountered
in practice, there could be alternative ways to describe partial information about shares
which represent better the modeler’s knowledge in highly uncertain situations. Nonethe-
less, we find the sampling methods illustrated in the paper are already good enough for
most use cases, and a substantial improvement to current practice.

The sampling approach can similarly be used for any task that involves data disag-
gregation, or the one-to-many allocation in general. As outlined in the introduction, in
IE research, this includes sampling transfer coefficients in MFA, and disaggregation of
broader categories of environmental impact to more detailed economic sectors in IOA. In
LCA, the sum-to-one type constraints can occur in different stages of the analysis. In the
inventory analysis stage, there may be only aggregated measured data available which
must be shared between the specific processes modeled (for example, total electricity
consumption of a factory is measured and must be split between several processes within
the factory). Similar to the MFA examples, this can be achieved via some proxy data
(perhaps the total mass output of each process, or their input power ratings) which im-
plies correlations. Another case is the allocation of impacts to different functional flows
in LCA in the case of multifunctionality. While this allocation is a normative choice,
and so not exactly the same as the disaggregation of empirical measurements, it is still
useful to be represent uncertainty in allocation factors either because the modeler wishes
to include alternative choices as an element of the total modeling uncertainty, or because
the allocation factors themselves are uncertain (e.g. prices are imperfectly known when
applying economic allocation). Jung et al. (2014) has discussed the modeling of uncer-
tainty in allocation factors using an analytical approach, and the sampling-based methods
discussed in this paper expand on that to allow more flexibility in the nature of the un-
certainty. Despite uncertainty analysis being relatively common in LCA (compared to 10
and MFA), the uncertainty of those allocations is currently not included in most uncer-
tainty analyses. Kim et al. (2025) who model the uncertainty of market mixes in LCA
marks a very recent exception, yet their sampling could be made more coherent and flex-
ible with the procedure presented in this paper e.g. by allowing different uncertainties for
different shares using the generalized Dirichlet distribution.

Through the implementation in the form of the Python package maxent_disaggregation
and R-package MaxentDisaggregation accompanying the paper, the approach can easily
be incorporated into most MC workflows. With that, we hope to contribute to lowering
the technical barrier to conduct uncertainty analysis of IE models, transitioning uncer-
tainty assessment from an optional add-on to a standard practice in IE studies.
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