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Abstract22

Correctly modelling the relationships between correlated, uncertain input data23

is crucial for producing accurate uncertainty estimates of model results. This re-24

quires both an uncertainty analysis that accounts for correlations and the appro-25

priate communication of the results, so that other analysts can correctly interpret26

the reported uncertainties. However, neither is common practice in industrial eco-27

logy modelling. A typical case for correlated results is the disaggregation of a total28

value into uncertain shares, for which we present a practical yet robust approach to29

model the uncertainty. Our approach is based on two standard and two generalised30

Dirichlet distributions, and it uses the maximum entropy principle to choose min-31

imally biased distribution parameters in the absence of specific known values. We32

discuss how correlation should be communicated to preserve accurate uncertainty33

information and provide examples to quantify the difference it makes to the results34
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when the correlation is simplified or completely neglected. The proposed procedure35

will improve the accuracy of uncertainty quantification in Material Flow Analysis36

(e.g. where allocation coefficients split flows to sectors), Input Output Analysis (e.g.37

where aggregated environmental impact data has to be disaggregated to detailed eco-38

nomic sectors), and some instances in Life Cycle Assessment (e.g. where market39

shares are uncertain). Last but not least, to lower the technical barrier to applying40

these approaches, we provide easy-to-use Python and R packages which automate41

the approach.42

KEYWORDS: industrial ecology, Dirichlet, maximum entropy, MFA, IO, LCA43

1 Introduction44

Having solid knowledge of model uncertainty is paramount for both robust decision-45

making (Morgan et al., 1990; Reale et al., 2017) and for efficiently “prioritising data46

collection efforts” (Groen and Heijungs, 2017). However, Industrial Ecology (IE) re-47

search frequently lacks quantitative uncertainty estimates (Laner et al., 2014; Groen and48

Heijungs, 2017; Zhang et al., 2019). Accurate uncertainty quantification is a particu-49

lar challenge in the common case that IE model results are formed from the aggregated50

sums of many individual data points: for example, the contribution of different sectors’51

footprint multipliers in Input-Output Analysis (IOA); the total material stock in a Mater-52

ial Stock and Flow Analysis (MSFA) being composed of stocks in different sectors and53

products; or the overall environmental impacts from contributions of multiple processes54

in a Life Cycle Assessment (LCA).55

What these situations have in common is that the uncertainty in the aggregated total56

depends strongly on how the uncertainty in the individual elements is correlated. Negat-57

ive correlation tends to cancel out individual variations when aggregated, while positive58

correlations tend to exaggerate them (Groen and Heijungs, 2017; Heijungs et al., 2019;59

Solazzo et al., 2021). Ignoring correlations has direct implications on decision-making,60

for example when decision makers have to decide between two correlated uncertain vari-61

ables (such as comparing the impact of renewable e-fuels vs. hydrogen to fuel ships),62

as well as implications on the results of models which use these correlated variables as63

inputs (Figure 1).64

Figure 2 illustrates this, showing two disaggregated random variables A and B in two65

extreme cases, one with a strong positive correlation (top row) and one with a strong66

negative correlation (bottom row). Ignoring correlations could lead to misleading con-67

clusions about the likelihood of one option being preferable to another: Whereas in the68

top row the marginal distributions of A and B look almost identical, in the bottom case69

the marginal distributions of A and B (and the sample means and percentiles) are more70

distinct, suggesting that B is expected to be larger. In fact, due to the strong positive cor-71

relations (top row) the probability that B is larger A is actually 100% (that is, even though72

both A and B vary, B > A for all N draws), while the negative correlations (bottom row)73

lead to a probability that B is larger than A of only 64%. When correlated variables are74

used as inputs in another model, the uncertainty of the results of this model might be75

biased. In the simple case of summing two correlated random variables, the uncertainty76

of that aggregate is overestimated in case of negative correlations and underestimated in77

case of positive correlations (see Figure 2, right column).78
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Figure 1: A schematic representation of the two challenges this paper addresses to over-
come two common problems that might arise when ignoring correlations.

In general, the direction and size of the error will depend on the details of the problem,79

but as an illustrative real-world example, an analysis of disaggregation uncertainty in an80

IOA of the carbon footprint of Germany (in the Supplementary Information, Section81

D) shows that neglecting correlations can cause the level of uncertainty (measured as82

standard deviation) in individual sector’s carbon multiplier to deviate by -34 to +130%,83

and the uncertainty in the national footprint to be overestimated by 46%.84

As illustrated in Figure 1 there are two challenges to overcome to avoid making these85

errors in the uncertainty quantification of IE models:86

1. Modelers must keep track of correlations introduced into model outputs due to the87

model structure and assumptions; and88

2. Modelers must communicate correlations in model outputs, and make use of in-89

formation about any correlations in model input data.90

For the first problem, while in general there could be many reasons for correlations91

to be present in model results, we focus on a very common case for IE models: when92

researchers have to deal with the challenge of disaggregating single data points because93

the data is unavailable at the required resolution. This usually involves splitting one data94

point into several disaggregates using additional proxy or auxiliary data (both terms are95

used interchangeably in this article) or assumptions, and is a challenge common in all96

three of the model families dominant in IE research (Figure 3). While a few IE stud-97

ies (reviewed in more detail in Section 2) use Dirichlet or other probability distributions98

and Monte Carlo sampling to track the correlations and uncertainty introduced during99

disaggregation (Lupton and Allwood, 2018; Paoli et al., 2018; Helbig et al., 2022; Char-100

pentier Poncelet et al., 2022), it is not widespread in IE practice. Moreover, the basic101

methods applied in the literature do not handle various technical cases that are important102

in real-world problems, such as when some subset of the disaggregated shares is more103

uncertain than others, or when information about some shares and their uncertainty is104

missing altogether.105
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Figure 2: A illustrative example showing two random variables A and B that are strongly
positively (top row) and negatively (bottom row) correlated. Both A and B are the result
of disaggregating a common aggregate, with different assumptions about the uncertainty
in the shares and the initial aggregated total. Left column shows the marginal histograms
of A and B and middle column the correlation between them. Even though in the top
case the means and 2.5th/97th percentiles between A and B are very similar (45 vs. 55
for the means) due to the strong positive correlation, for all N = 10000 draws B is larger
than A (i.e. P (B > A) = 1). In contrast, even though in the bottom case the means of A
and B are the same as above, the negative correlations lead to a much lower probability
that B is larger than A. The right column illustrate Problem 1 from Figure 1(a): The
error introduced in the results of Model 2 when the correlations of the results of Model 1
are ignored. Ignoring negative correlations leads to overestimating uncertainties (bottom
row) while ignoring positive correlations tend to underestimate uncertainties (top row).
To check the code to reproduce the figures and the data behind it, please see the “Data
and code availability” statement.
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We therefore present in this paper a review of current practices and limitations for106

dealing with uncertainty due to disaggregation (Section 2), and introduce the theory and107

a practical guide that IE modelers can use to track correlation in model outputs, in the108

context of MFA, LCA or IOA (Section 3).109

For the second problem – communicating information about correlations in model110

outputs – we are not aware of any specific guidance on this for IE modelers. We therefore111

discuss the ways that correlation in uncertain model results may be communicated, with112

different trade-offs between complexity, storage space and accuracy, and the effect on113

subsequent analysis if correlations are not accurately preserved (Section 4).114

Finally, we discuss the relevance of our presented approach for IE researchers and115

show its limitations and avenues for further research and refinements (Section 5).116

2 Background and literature review117

2.1 Data disaggregation under uncertainty118

Consider the examples shown in Figure 3. All have in common that we have an aggregate119

flow y0, which is known, such as the total amount of steel manufactured in a given time120

and geography. What we do not know, but are interested in, are the K disaggregate121

flows y1, ..., yK (also called components), such as the different end-use sectors where122

the manufactured steel ends up. Even though we do not know the values of y1, ..., yK ,123

our model structures in IE demand that the individual components yi’s need to sum to124

the known aggregate flow y0 to respect the mass-, energy-, stoichiometric-, or economic125

balance of the model:126

y0 =
K∑
i=1

yi (1)

Equation 1 is also called an accounting identity.127

To get estimates of the disaggregate flows, one usually uses proxy data to calculate128

shares (ratios/fractions) of the respective disaggregate units x1, ..., xK . In order to al-129

locate the entire aggregate flow without leaving any residual (thus to respect the system130

balance), those shares need to sum to one:131

K∑
i=1

xi = 1 (2)

Disaggregate flows are calculated as132

yi = xiy0,∀i ∈ {1, ...,K}. (3)

In the MFA example above, proxy data might be monetary steel purchases by the car133

manufacturing and construction sectors. The LCA modeler might take the energy content134

or economic value of the three functional flows as proxies for allocation, or production135

volumes to split aggregated measurements of energy use across processes (we discuss136

later the difference between uncertainty in normative choices such as allocation, and137
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Figure 3: (Simplified) examples of data disaggregation from the three model families
dominant in Industrial Ecology research. For example, an MFA modeler interested in
the flow of steel through the economy must know the fractions of steel that end in cars
and buildings, respectively, for a given time and location (Streeck et al., 2023). An LCA
modeler assessing the environmental impacts of a plastic incineration plant for combined
heat and electricity production needs to allocate CO2-emissions to different functional
flows, i.e., to the two products leaving the plant (electricity and heat) and the waste
product entering the plant (plastic waste) (Guinée et al., 2021), or when measured total
electricity consumed in a factory must be shared between the modeled sub-processes.
Meanwhile, compilers of environmentally-extended IO databases must allocate CO2-
emissions from road transport to the IO sectors (Schulte et al., 2024).

disaggregation of empirical data). Meanwhile, the IO modeler might use the economic138

size of the different sectors.139

When modelers aim to understand the robustness or uncertainty of their models bey-140

ond just average values (or point estimates), they have to use uncertainty propagation,141

assessing how uncertainty propagates from model inputs to model outputs.1 Two op-142

tions for propagating uncertainty exist: analytical or simulation-/sampling-based meth-143

ods. Analytical uncertainty propagation usually involves using calculus, “applying a144

local derivative of the mathematical function that specifies how inputs are transformed145

into outputs” (Heijungs and Lenzen, 2014). This approach requires a good understand-146

ing of the processes involved in the model and becomes inaccurate for large uncertainties147

and/or non-linear models.148

Thus, in IE, researchers often apply simulation or sampling-based methods. The149

most commonly used method is Monte-Carlo (MC) sampling. MC sampling methods150

propagate uncertainty from model inputs to outputs by repeatedly and randomly sampling151

from the probability distribution of the model inputs and calculating the model results for152

each iteration. This results in a sample of model results from which several summary153

statistics such as mean, standard deviation, quantiles, or the covariance matrix can be154

computed. This method is more flexible than the analytical method but at the expense of155

additional computational efforts. Because the complexity of models in IE requires this156

flexibility, we base this paper on the sampling methods, although we note the problem157

of estimating the uncertainty of disaggregates can also be approached analytically (Jung158

et al., 2014) or based on numerical approximations (Lenzen and Murray, 2010; Min and159

1Note that in this article, we only deal with “parameter uncertainty.” For other types of uncertainty
common in IE, please refer to Huijbregts (1998); Laner et al. (2014)
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Rao, 2018; Rodrigues, 2016). We provide a literature review and a comparison between160

these different approaches in the Supporting Information.161

Uncertainty propagation is straightforward when applied to data aggregation espe-162

cially when sampling-based methods are used: the components are simply added together163

for each sample to produce the samples of the aggregate. In the case of data disaggrega-164

tion, however, accurately dealing with uncertainty becomes significantly more complex.165

In particular, the specification of the probability distributions to draw from becomes more166

challenging. This complexity arises primarily from the accounting identity (Equation 1)167

introducing inherent correlations between the disaggregates. Ignoring those correlations,168

in turn, can lead to under- or overestimating uncertainty (Groen and Heijungs, 2017;169

Heijungs et al., 2019; Solazzo et al., 2021). The accounting identity constraint naturally170

introduces a negative correlation between the xi’s and either positive or negative correl-171

ations between the disaggregates yi’s depending on the size of the uncertainties of the172

aggregates and the shares (Rodrigues, 2016).173

2.2 Usage of the Dirichlet distribution to sample shares174

Although data disaggregation is common in IE research, only few studies assess the un-175

certainty of this disaggregation. Of those that do, most sample the shares from the Dirich-176

let distribution (e.g. Meyer et al., 2017; Paoli et al., 2018; Lupton and Allwood, 2018;177

Helbig et al., 2022; Charpentier Poncelet et al., 2022; Kim et al., 2025). A few stud-178

ies used different distributions to sample shares, e.g. Bornhöft et al. (2016) who used179

a normalized uniform distribution, whose shortcomings have already been discussed in180

Lupton and Allwood (2018). The Dirichlet distribution, in turn, is noted for its practical181

suitability in sampling shares due to its property of samples summing to one (Igos et al.,182

2019). Moreover, samples generated from the Dirichlet distribution are naturally negat-183

ively correlated. It is important to note that those correlations are solely determined by184

the properties of the data. Hence, the correlations we discuss in the following solely refer185

to the statistical correlations needed to ensure results are consistent with the accounting186

identities that govern them. Whenever modelers have prior estimates of correlations (e.g.187

from expert knowledge), “these alternative priors should be used for as long as they are188

properly justified and mutually consistent” (Rodrigues, 2016).189

While few in number, the IE studies using the Dirichlet distribution highlight the ver-190

satility of its use cases. Helbig et al. (2022) apply the Dirichlet distribution to sample191

allocation parameters of their dynamic MFA model to trace the fate of seven metals at a192

global level. In a similar context, Charpentier Poncelet et al. (2022) use the Dirichlet dis-193

tribution to estimate the uncertainty from their model on estimating losses and lifetimes194

of metals in the economy. In their uncertainty analysis on useful energy balances for the195

UK, Paoli et al. (2018) use the Dirichlet distribution to randomly allocate energy flows to196

energy end-uses. In their Bayesian MFA study Lupton and Allwood (2018) define prior197

distributions for transfer coefficients (i.e. “the fractions of a process’s output that flows to198

different destinations”) using Dirichlet distributions. Meyer et al. (2017) study different199

techniques to include noise damage in LCA. The authors use the Dirichlet distribution200

to sample all model parameters representing a percentage in their uncertainty analysis.201

Recently, Kim et al. (2025) use the Dirichlet distribution to sample relative shares of202

activities in Life Cycle Inventory data that must sum to a whole – such as different power203
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sources in national electricity mixes or inputs in implicit market datasets. Santos et al.204

(2022) use the Dirichlet distribution in their stochastic IO analysis to sample the columns205

of the technology matrix A.206

However, the way the Dirichlet distribution has been used to sample variables with207

a “sum-to-one-constraint” so far in IE research has two major limitations, as outlined in208

the following.209

2.2.1 Choosing parameters for the Dirichlet distribution210

The first limitation relates to how the parameters of the Dirichlet distribution are chosen.211

The Dirichlet distribution is parameterized by a vector of positive-valued parameters α =212

(α1, ..., αK) such that
∑K

i=1 αi = 1, and a positive-valued concentration parameter γ >213

0.2214

Most existing studies choose the concentration parameter γ of the Dirichlet distribu-215

tion in ways that either ignore available uncertainty information or distort it. Yet, since γ216

controls how spread out the disaggregated shares can be (see Figure 4), the choice of the217

γ parameter might have a large effect on the overall uncertainty of the model results.218

Two problematic approaches dominate in the literature. First, some studies make ar-219

bitrary choices: Santos et al. (2022) simply set γ to 1, while Helbig et al. (2022) tests three220

arbitrary values without justification. Second, other studies compromise the uncertainty221

information for some components to match targets for others. Paoli et al. (2018) para-222

meterize the Dirichlet distribution in such a way to “match the uncertainty in the largest223

part [i.e. share] to the specified value” acknowledging this “exaggerate[s] the uncertainty224

of small parts”. Similarly, Lupton and Allwood (2018) determine the concentration para-225

meter γ to give a desired variance for one of the disaggregates, preventing independent226

control over other components’ uncertainties. Going one step further, Kim et al. (2025)227

optimize γ (which they call λ) for exchanges “with higher production volume shares” by228

first estimating how much uncertainty each component would need on its own and then229

setting γ to the simple average of those “uncertainty scores” for the exchanges that are230

larger than the market average. Meyer et al. (2017) (implicitly) choose the γ parameter231

so that the Dirichlet distributed shares exhibit exogenously assumed standard deviations.232

Only Charpentier Poncelet et al. (2022) attempt a systematic approach using pedigree233

matrices, but apply the same variance measure to all shares regardless of their individual234

uncertainty characteristics.235

Against this background, a principled method is needed to choosing the parameters236

of a Dirichlet distribution.237

2.2.2 Lack of flexibility of the Dirichlet distribution238

The second limitation of the sampling-based approach using the standard Dirichlet dis-239

tribution is its lack of flexibility. The standard Dirichlet distribution does not allow for240

cases in which the uncertainty differs between the components, nor for cases with par-241

tially missing information on the components. However, outside IE research approaches242

2Note that in the literature the parameterization of the Dirichlet distribution differs. Alternative para-
meterizations found are listed in the Supporting Information
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have been suggested and applied to increase the flexibility of the standard Dirichlet distri-243

bution. To allow for handling different uncertainties between components, several gener-244

alizations of the Dirichlet distribution have been suggested (Plessis et al., 2010; Lingwall245

et al., 2008). To address partially missing information, several forms of hybrid Dirichlet246

sampling procedures have been suggested (Plessis et al., 2010; Luedeker, 2022; Ng et al.,247

2011).248

2.3 Summary of gaps in current approaches249

To summarize, we identify the following key gaps in the current approaches and imple-250

mentation of uncertainty analysis involving data disaggregation:251

• First, even though data disaggregation is a common problem faced by IE schol-252

ars, yet despite its apparent advantages within the sampling based approach, the253

Dirichlet distribution has rarely been applied in IE research to estimate model un-254

certainty. This highlights the need for an clear and easy to follow recipe on how to255

use the Dirichlet distribution within IE research.256

• Second, the few IE studies using a Dirichlet distribution to sample variables with257

a “sum-to-one-constraint” rely on somewhat arbitrary assumptions concerning se-258

lecting the concentration parameter γ. A more principled method for choosing259

parameter values in situations with incomplete information is therefore needed.260

• Third, the sampling approach based on the standard Dirichlet distribution lacks261

flexibility with regard to mixed or partially missing information.262

3 Practical approach to modeling uncertainty in disag-263

gregation264

Against those gaps in current approaches, in the following we introduce the theory and a265

practical guide that IE modelers can use to track correlations stemming from data disag-266

gregation in their models. To ease the application by IE modelers, we implemented the267

proposed approach in an R and Python package, respectively (see links below).268

3.1 Notation269

We use uppercase letters to denote a random variable. Hence, the aggregate is denoted270

Y0, the disaggregates (components) Y1, ..., YK, and the shares/fractions X1, ..., XK. We271

use xi and yi to denote a particular realization of a random variable. Aggregate variables272

or realizations thereof are denoted with a subscript 0, such as X0. Disaggregates and273

shares/fractions with a subscript i ∈ 1, ...,K, e.g., Xi or X3. Further, we denote the best-274

guess (in the form of the expected value) of variable i as mi and the uncertainty (in the275

form of a standard deviation) as si.276
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3.2 General procedure277

Uncertainty propagation using MC requires first to assign probability distributions to the278

model inputs. In a process that has the form illustrated in Figure 3 (i.e., which involves279

data disaggregation), there is one explicit model input Y0, and K implicit model inputs in280

the form of the vector of best-guesses of the shares m = (m1, ....,mK) stemming from281

proxy data.282

By repeatedly (N -times) and randomly sampling from those probability distributions,283

we can generate sets of N random variants of both model variables {y10, y20, ..., yN0 } and284

{x1,x2, ...,xN}. Using Equation 3 we calculate N random samples of the K disaggreg-285

ates {y11, ..., yN1 }, {y12, ..., yN2 }, ...., {y1K, ..., yNK }.286

3.3 Assigning probability distributions to the model inputs287

The first step in uncertainty analysis is assigning probability distributions to the model288

inputs. This would be straightforward if the modeler had good statistical information289

on the ‘real’ distribution of the model input. In that situation this information should290

of course be used directly, but in many cases only more limited information is available291

(e.g., the mean, standard deviation, lower/upper bounds), which must then be used to292

choose an assumed probability distribution. To make this choice as objective as pos-293

sible, Jaynes (1957) introduced the Maximum Entropy (MaxEnt) principle. According294

to Jaynes (1957), among all probability distributions that align with a given set of con-295

straints and information, the one with the maximum entropy should be selected. The296

MaxEnt principle implies that the chosen distribution is maximally uninformative about297

what is unknown and maximally informative about what is known. Consequently, the298

MaxEnt distribution provides the least biased estimation consistent with the provided299

constraints and information. In this paper, we aim to adhere to the MaxEnt principle300

where possible.301

We cover different cases that differ in the kind of information a modeler has con-302

cerning the aggregate variable (four cases, Table 1) and the shares (four cases, Table 1),303

which represent the most common cases from our own work and the IE literature.304

3.3.1 Aggregate305

Choosing the MaxEnt distribution for an isolated datum such as the aggregate Y0 is306

straightforward and well-studied. Others have done the theoretical derivation of the307

MaxEnt distributions for all of the cases covered in this work, and we refer to the ex-308

isting literature here. Table 1 lists the four cases covered in this paper, differing in terms309

of information available along with their MaxEnt distribution. We consider cases where310

modelers have information on upper and/or lower bounds (a0 and b0, respectively), a311

best-guess (or expectation) m0 and/or an uncertainty estimate in the form of the standard312

deviation s0. Since variables in IE modeling often reflect physical or monetary flows,313

they are usually constrained to be positive. In that case the lognormal distribution is a314

common option in IE research (Qin and Suh, 2017; Laner et al., 2014). The lognormal315

distribution is the MaxEnt distribution when the mean and the variance of the natural316

logarithm of a random variable X are known.317
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We note that in IE research a variety of other distributions can and are used for isol-318

ated random variables (Heijungs, 2024). The choice of distribution should always be319

guided by knowledge we have about our data at hand. In particular, if a researcher has320

knowledge of the distribution of the aggregate then they should use this instead of the321

MaxEnt solution listed here.322

3.3.2 Shares323

For the shares, we consider four different cases which differ in the amount of information324

available to the modeler (see Table 1):325

1. No specific information is available apart from the number of processes (K) an326

aggregate quantity is linked to.327

2. Some proxy or auxiliary data exist, allowing the modeler to calculate the best guess328

m of the shares.329

3. Information on both the shares’ best-guesses m and uncertainties on these ‘best-330

guesses’ s.331

4. Incomplete information on the shares’ best-guesses and/or uncertainties (for ex-332

ample, we might only have information on the uncertainty of one component).333

Finding probability distributions for these four cases is more challenging than for the334

aggregate quantity. As seen in the literature review, the multivariate Dirichlet distribution335

is a good choice for sampling shares because samples from the Dirichlet distribution336

always sum to one. Moreover, Vlad et al. (2001) showed that the Dirichlet distribution is337

the distribution with the maximum entropy for the constraints of positivity and sum-to-338

one. For the third and fourth cases, however, the standard Dirichlet distribution lacks the339

flexibility required to introduce different uncertainties for each disaggregate item. That340

is why we use a generalized variant of the Dirichlet distribution (Plessis et al., 2010) for341

case three and a hybrid Dirichlet distribution for case four. However, for these last two342

cases, we diverge from the MaxEnt principle as we are neither aware of any work on343

finding the MaxEnt distribution given the information and constraints, nor were we able344

to find the solution (if there is any) by ourselves within the scope of this paper.345

The standard Dirichlet distribution346

Formally expressed, the Dirichlet distribution describes K ≥ 2 random variables X1, ..., XK347

such that each xi ∈ (0, 1) and
∑K

i=1 xi = 1. In its most commonly used version, the Di-348

richlet distribution is parameterized as follows:349

x1, ..., xK ∼ Dir∗(µ1, ..., µK), (4)

where µ = (µ1, ..., µK) is a vector of K positive reals.350

The expected value is given by351

E[Xi] =
µi∑K
k=1 µk

. (5)
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Table 1: The cases this paper addresses, differing in terms of the amount of information
available on both aggregate data and shares, and their respective probability distributions.
The aggregate cases and their MaxEnt probability distributions are based on Rodrigues
(2016), while the share cases and their probability distributions are based on Plessis et al.
(2010). For aggregate cases: µ = Mean of X , σ = Standard deviation of X , µ∗/σ∗ =
Mean/Standard deviation of lnX , a = minimum value of X , b = maximum value of X .
For share cases: Dir = standard Dirichlet distribution, Dirg = generalized Dirichlet dis-
tribution, Dirh = hybrid Dirichlet distribution, α = Mean of sector shares/branching
ratios (vector), β = Standard deviations of sector shares/branching ratios (vector), γ =
concentration parameter, γ∗ = fitted concentration parameter to MaxEnt. {1/K}K de-
notes a vector of (1/K, 1/K, ...) of size K.

case id Information available Probability distribution

aggregate 1 a0, b0 Unif(a0, b0)
aggregate 2 m0, s0 Norm(µ = m0, σ = s0)
aggregate 3 m0, a0 = 0 Exp(λ = 1/m0)
aggregate 4 m∗

0, s
∗
0 Lognorm(µ∗ = m∗

0, σ
∗ = s∗0)

shares 1 K Dir(α = {1/K}K ; γ = K)
shares 2 m1, . . . ,mK Dir(α = m; γ = γ∗)
shares 3 m1, . . . ,mK; s1, . . . , sK Dirg(m; s)
shares 4 m1, . . . ,NA, . . . ,mK; s1, . . . ,NA, . . . , sK Dirh(m; s)

Thereby,
∑

µi provides the “concentration” of the variables. Since we want to model352

this concentration explicitly in the paper, we use a slightly modified version of the Di-353

richlet distribution which makes the concentration parameter γ explicit:354

x1, ..., xK ∼ Dir(α1, ..., αK; γ), (6)

which is parameterized by a vector of positive-valued parameters α = (α1, ..., αK)355

such that
∑K

i=1 αi = 1, and an additional positive-valued concentration parameter γ > 0.356

Both parameterization forms yield the same distribution if357

µi = γαi,∀i ∈ {1, ...,K} (7)

The Dirichlet distribution Dir has the useful property that the expected values for358

each variable Xi equal the parameter value αi:359

E[Xi] = αi,∀i ∈ {1, ...,K}. (8)

The concentration parameter γ, on the other hand, controls the variance(s) of X =360

(X1, ..., XK). This is illustrated in Figure 4 showing histograms of 10000 Dirichlet dis-361

tributed random numbers with the same average sector shares α = (0.1, 0.3, 0.6) but362

with different values of γ. From that, we see that the variance decreases with increasing363

γ. In other words, the distributions become more concentrated with higher values of γ.364

Since for cases 1 and 2 we assume not to know the uncertainties of the shares, we365

apply the MaxEnt principle to determine the value of γ that maximizes the entropy of the366
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Figure 4: Histograms of shares sampled from Dirichlet distributions with three different
values of γ (N = 10000, α = (0.1, 0.3, 0.6)). γ = 6.36 marks the MaxEnt solution for
that specific case. To check the code to reproduce the figure and the data behind it, please
see the “Data and code availability” statement.

Dirichlet distribution given the m provided (more details in Section B.4 of the Supporting367

Information). For case 1, which assumes no knowledge of shares, the MaxEnt Dirichlet368

distribution is369

Dir(α = {
1

K
}K ; γ = K), (9)

where { 1
K
}K denotes a vector of only 1

K
’s of size K. This distribution is called a flat370

Dirichlet or the maximal uninformative Dirichlet.371

In the second case, the modeler has some proxy or auxiliary data to calculate a best-372

guess of the shares. In this case, optimizing the γ to find the Dirichlet distribution with373

the maximum entropy depends on the values of the α. Hence, there is not one unique374

solution like in case 1. We propose an optimization procedure to find γ̂ (the value for375

γ that maximizes the entropy of the Dirichlet distribution) which is explained further in376

Section B.4 of the Supporting Information.377

The Generalized Dirichlet distribution378

With the γ parameter of the standard Dirichlet distribution, we can only adjust the con-379

centration of all sampled shares X simultaneously. Case 3, however, in which we have380

not only information on the shares but also on the uncertainty of those shares, which can381

differ between the different components, demands more flexibility. For this case, several382

generalizations of the Dirichlet distribution have been proposed. Here, we apply the one383

formulated by Lingwall et al. (2008) which is parameterized as:384

x1, ..., xK ∼ Dirg(α1, ..., αK; β1, ..., βK), (10)
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where, following the notation from the the standard Dirichlet distribution above, α =385

(α1, ..., αK) is a vector with the best estimates of the shares and β = (β1, ..., βK) is an386

additional vector of positive-valued parameters, describing the input uncertainties on the387

α’s. While the PDF is given in Lingwall et al. (2008, equation 2 and 3), we use the388

sampling algorithm provided in Appendix 2 of Plessis et al. (2010) to generate random389

numbers from this distribution. To do so one first defines two parameters: a shape para-390

meter α∗
i and a scale parameter β∗

i :391

α∗
i =

(
αi

βi

)2

and β∗
i =

αi

β2
i

, (11)

which are then used to generate K independent samples x̃1, x̃2, ..., x̃K of length N by392

sampling from gamma distributions:393

gamma(α∗
i , β

∗
i ) =

β∗
i
α∗
i

Γ(α∗
i )
x
α∗
i−1

i e−β∗
i xi , (12)

which are then normalised via394

xji =
x̃ji∑n
i x̃ji

, (13)

to adhere to the ‘sum-to-one’ constraint
∑

i xi = 1.395

As already noted by Lingwall et al. (2008), due to the sum-to-one constraint, the396

uncertainty of the sampled shares x1, ..., xK will, in general, be close but not exactly397

equal to the desired uncertainty β1, ..., βK.398

3.3.3 The hybrid Dirichlet distribution399

In some cases, however, a modeler only has partial information on a composition’s best400

guesses or uncertainties. For example, we might only have information on the best-401

guesses of some components, while for others not at all. Here, we propose and imple-402

ment a hybrid Dirichlet sampling approach, which shares the same general form as the403

generalized Dirichlet:404

x1, ..., xK ∼ Dirh(α1, ..., αK; β1, ..., βK), (14)

but allows for missing elements both in α and β.405

In this hybrid Dirichlet approach, the disaggregates are divided into different parts406

based on the available information, each of which is then sampled semi-independently407

before all parts are combined again. The hybrid Dirichlet algorithm is described by the408

following stepwise procedure:409

1. Handling missing means: If elements in α are missing, the remaining mass is410

evenly distributed among the missing components so that
∑

αi = 1.411

2. Truncated Beta draw for the components with SDs: All components i for which412

an uncertainty estimate βi is available are independently sampled from a Beta dis-413

tribution with shape parameters αi and βi, resulting in an array of size (N,Nβ),414

where Nβ is the number of components we have a β value for. Next we reject and415

resample any row whose sum exceeds 1.416
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Model 1: 
Disaggregating by

vehicle type

Model 2: 
LCA of vehicle
manufacturing 

total steel consumption
 for vehicle manufacturing

BEV

ICE

HBEV

life cycle impacts
from steel production

for vehicle
manufacturing

emission factor steel:
2.5proxy data

Figure 5: The overall procedure for an illustrative example with two simple models:
Model 1 which disaggregates total steel consumed for vehicle manufacturing by vehicle
type (ICE, BEV, and HBEV) based on production volume proxies. Those disaggregated
figures are then used by Model 2 to estimate the life cycle impacts from steel production
for vehicle manufacturing.

3. Bias check and automatic downgrade (iterative): The rejection criteria in Step 2417

can lead to a truncation of some Beta distributions which have either a high αi (high418

share of the total) or a high βi (high uncertainty). The truncation of the distribution419

tail leads to bias in the expectation value. Therefore we compute the relative bias420

as biasi(Xi, αi) = |x̄i−αi|
αi

for all components drawn in Step 2. Whenever biasi421

exceeds the user-set tolerance (which is 0.1 in our case), ignore the corresponding422

βi (set to NA) and repeat Steps 2–3. The loop stops as soon as every Beta-sampled423

component satisfies the bias criterion or no βi remain.424

4. Maximum-entropy Dirichlet draw for the remainder: All remaining compon-425

ents, whose βi is NA, from a standard Dirichlet distribution with concentration γ426

chosen so that the entropy of the distribution is maximized.427

5. Row-wise rescaling: Finally, the Dirichlet part (leaving the Beta draws untouched)428

is rescaled so that each sample satisfies
∑K

i=1 xi = 1.429

With this approach we make sure that the possible bias caused by the rejection of430

Beta draws in step 2 stays within an acceptable – user defined – range.431

So, this methods gives a practical solution for sampling from Dirichlet distributions432

with partial information with reasonable parameters, falling back gracefully to a feasible433

distribution when the exact distribution cannot be sampled.434

3.3.4 A simple example435

Having introduced the theory of how to sample disaggregates, we next apply the pro-436

cedure to a very simple example that follows the schema introduced in Figure 1 in the437

introduction. We assume that an IE researcher has data on total steel consumption for438

vehicle manufacturing but needs to disaggregate this figure by vehicle type (ICE, BEV,439

and HBEV) based on production volume proxies (Figure 5).440

In Figure 6 we show three different scenarios, which differ in terms of what inform-441

ation is available on the aggregate (total steel consumption) and the shares (by vehicle442

type). In all three scenarios the modeler has a best-guess and standard deviation for the443

aggregate. For the shares, scenario 1 depicts the case that only best-guesses are available,444

scenario 2 shows the case where for one component both a best guess and a standard445
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deviation is available while for the other two no information at all is available. Lastly,446

scenario 3 depicts the case where best-guesses and standard deviations are available for447

all components.448

Following the procedure described above, the aggregates and shares are sampled from449

the respective distributions. In scenario 1 the samples of the shares samples are generated450

from a standard Dirichlet distribution with the γ fitted for MaxEnt, in scenario 2 from a451

hybrid Dirichlet and in scenario 3 from a generalized Dirichlet. The aggregate samples452

come in all three cases from a lognormal distribution.453

In the the R and Python packages which accompany this paper the choice of distribu-454

tion for the aggregate and the shares, the determination of the parameters (in particular455

γ∗), and the sampling itself is all automated so that the user only has to specify the in-456

formation available.457

As can be seen in the right column of Figure 6, the three different configurations lead458

to very distinct correlation patterns. In scenario 1 a low uncertainty of the aggregate459

with a maximal wide uncertainty of the shares leads to negative correlations between460

all components. In scenario 2 a higher uncertainty of the aggregate with a mix of low461

uncertainty of one component (ICE) and a high uncertainty of the other two, leads to a462

slightly negative correlation between BEV and HBEV and positive correlations between463

the ICE and BEV and ICE and HBEV. In scenario 3 a high uncertainty of the aggregate464

together with a very small uncertainty on the shares leads to strong positive correlations465

between the shares of all three vehicle types.466

4 On the challenge of sharing correlated data467

So far, we have discussed generating samples for disaggregates based on the informa-468

tion provided. Integrating this sampling approach into uncertainty propagation allows469

modelers to obtain samples of their model results. The challenge then becomes how to470

communicate and share those results that include uncertainty effectively. Unlike determ-471

inistic results, which can be shared as a simple number (if results are 1-dimensional) or472

as (multidimensional) numeric arrays, Monte Carlo (MC) samples are more complex.473

While sharing full MC samples provides complete information (Lesage et al., 2018), it474

can lead to data storage issues, especially for large models like Multi-Regional Input-475

Output (MRIO) databases.476

To address this, modelers often share summary statistics of the sample, typically477

mean and standard deviation (Lenzen et al., 2013). Researchers can use these statist-478

ics to propagate uncertainty in their subsequent analyses by independently sampling the479

different elements of the initial model results. Independent sampling is usually carried480

out using univariate distributions where each variable is treated separately, ignoring how481

they might be related to each other.482

However, if data disaggregation is involved at any step of the model, samples of the483

elements of the model results are naturally correlated (Figure 6). Hence, when sharing484

only the mean and standard deviation, one loses information on correlations between485

model elements. As already pointed out in the introduction, this can lead to mislead-486

ing conclusions about the likelihood of one option being preferable to another, and to487

inconsistencies when reconstructing disaggregates, potentially over- or underestimating488
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Figure 6: Three different scenarios for the example from Figure 5, which differ in terms
of what information is available on the aggregate (total steel consumption) and the shares
(by vehicle type). Each scenario leads to different correlation patterns. To check the code
to reproduce the figure and the data behind it, please see the “Data and code availability”
statement.
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aggregate uncertainty.489

Let us illustrate this with the example from before on steel consumed by vehicle type.490

Imagine a second modeler using the results from Model 1 (the steel consumption by491

vehicle type) to calculate the life cycle emissions from steel production for vehicle man-492

ufacturing, as a weighted average across the different vehicle types (let’s call this Model493

2). Depending on the uncertainty information shared by Modeler 1 and the correlation494

between the results from Model 1 (end use flows of steel to vehicle type), the uncertainty495

of the average life cycle emissions (Model 2) may be over- or underestimated. Figure496

7, shows the results of Model 2 for the different correlation scenarios from the above497

example (Figure 6). Each column in Figure 7 corresponds to a correlation scenario (neg-498

ative, mixed, positive) and shows the uncertainty distributions for three different ways of499

communicating the uncertainty in the results from Model 1.500

First, the black histograms/boxplots show the uncertainty of the average life cycle501

emissions if the full uncertainty distributions from the MC sampling in Model 1 are used502

(assuming they were shared by Modeler 1). In the following, we will consider this as the503

’truth’.504

Second, the yellow histograms/boxplots in Figure 7 show the case in which only the505

mean and standard deviation of the end use flows are shared and used in a univariate506

Gamma distribution to sample from in Model 2. We see that if correlations are negative507

as in scenario 1, neglecting them leads to an overestimation, and vice versa for positive508

correlations (scenario 3). Ignoring the mixed correlations from scenario 2 leads to no509

particular bias.510

To improve the results for the cases when model results are correlated, sharing the511

covariance matrix along with the Mean values provides more complete information com-512

pared to sharing the univariate standard deviations. The Mean values and the covari-513

ance matrix can be fed into a multivariate distribution, which enables all elements to be514

sampled simultaneously, taking correlations into account. This case is illustrated as the515

third option in blue in Figure 7, which show results where the values of the end use flows516

from Model 1 were sampled from a multivariate gamma distribution using the means and517

covariance matrix. The Gamma distribution was chosen because for our data, the values518

are always positive, and this distribution performed better than alternatives in our tests519

(see the Supporting Information).520

We can see that this “intermediate” approach better captures the relationships between521

variables than independent sampling, with less data needed than sharing the full set of522

sampled values, though it slightly overestimates aggregate uncertainty when the disag-523

gregates are negatively correlated (scenario 1). This happens because gamma distribu-524

tions, unlike normal distributions, have mathematical constraints that make it difficult525

to model strong negative relationships between positive-valued variables (Minhajuddin526

et al., 2004).527

To summarize, if sampled model results contain correlations, the best option is al-528

ways to share the full uncertainty samples from the Monte Carlo Simulation to preserve529

all information. If that is not feasible due to storage or other constraints, the second-best530

option is to share the covariance matrix and mean or median values. Additionally, model-531

ers could provide an analysis on which multivariate distribution fits their data best (like532

we did in the Supporting Information where we compared three different distributions),533

and estimate the error introduced when re-sampling. The least best option, which can534
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Figure 7: A comparison of the uncertainty estimation in Model 2, for different levels
of available information on the uncertainty of the input data (output of Model 1 in the
example in Figure 6). The three columns show the different correlation scenarios and
the different color histograms (a) represent the uncertainty distributions for the results
of Model 2 for each level of available uncertainty information. The black case assumes
that the full samples from the Monte Carlo simulation in Model 1 have been shared, for
the yellow case only the means and SDs were used (sampled from a univariate Gamma
distribution), and the blue case assumes the availability of the means and covariance
matrix (sampled from a multivariate Gamma distribution. The Boxplots (b) show the
median (middle bar), 25th and 75th percentiles (box), and 2.5th and 97.5th (whiskers) of
the distributions in (a). Note: The x-axis of the Scenario 2 plot has been cut at 300 due to
the distributions’ long tails extending until almost 1000. To check the code to reproduce
the figure and the data behind it, please see the “Data and code availability” statement.
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lead to a serious misestimation of model uncertainties, is to only share the mean and SD,535

without any information on correlations.536

5 Discussion and conclusion537

This paper presents an approach to conducting an uncertainty analysis for models that538

include data disaggregation. The approach builds on different variants of the Dirichlet539

distribution to sample shares with the inherent sum-to-one property. The approach is540

flexible concerning information available on the input data. It can handle different levels541

of available information, both on the aggregate and the shares to sample from, while542

inherently accounting for statistical correlations.543

Regarding sharing and reusing model results involving data disaggregation, we show544

that ignoring correlations can theoretically lead to both under- and overestimation of un-545

certainty. The actual importance of neglecting correlations varies between models; while546

in the main paper we have used simple examples to illustrate the issues and solutions, a547

more realistic case study on compiling German CO2 satellite accounts shows that it also548

makes substantial differences in practice to the level of uncertainty estimated, most often549

leading to overestimation. Sharing and using the covariance matrix in addition to the550

sample mean leads to considerably more accurate results. However, inaccuracies persist,551

at least when the data is constrained (e.g., to be non-negative), since sampling from a552

multivariate distribution, which is only defined for a constrained space, fails in perfectly553

matching negative correlations. Against this background, we recommend sharing and554

using the entire MC sample to retain all information on data dependencies. If not pos-555

sible due to constrained storage capacity, we recommend sharing at least the mean and556

covariance matrices so that succeeding users of the model results can resample the data557

from a multivariate distribution.558

Further research could focus on identifying those elements that contribute most to the559

overall model uncertainty, e.g., by applying a global sensitivity analysis (Kim et al., 2022)560

or alternative approaches (Qin and Suh, 2021) so that data gathering can be prioritized561

more efficiently.562

Building on the core sampling methods we present here, there are three areas where563

further development would be useful. First, the sampling methods in this paper reflect564

“statistical” correlations, in the sense that they are only determined by the properties of565

the data. There can also be “real-world” (physical) correlations, i.e., those that exist due566

to dependencies present in the real world, such as the relation between heat and electri-567

city produced by a combined heat power plant. Further developments could include prior568

information on such “physical” correlations between individual shares or an aggregate569

and one/several shares. This would involve a more flexible alternative to the Dirichlet570

distribution, such as the logistic-normal distributions (Aitchison and Shen, 1980). How-571

ever, generating random numbers from a multivariate logistic-normal distribution so that572

the sample means equals the best-guesses on the shares is hardly possible since there is573

no analytical for the mean or the SD (though there might be ways to solve this numeric-574

ally). Another option to include prior correlations would be sampling based on the Monte575

Carlo Markov Chain (MCMC) approach (Andrieu et al., 2003), which, however, is very576

computationally intensive. Moreover, we consider that IE modelers very rarely possess577
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information on those dependencies. Second, although our analysis is mainly based on578

the principle of MaxEnt, we deviate from it in two cases: Neither for the case where579

we assume information on both best-guesses and uncertainties of the shares nor for the580

case where we assume partly missing information, we cannot exclude that there exist581

other distributions than the one we proposed (generalized/hybrid Dirichlet) that have a582

higher entropy given the information and constraints. Future work could be carried out583

on refining those sampling approaches.584

Third, our algorithm for sampling from Dirichlet distributions with partial informa-585

tion is approximate, and while it works well for parameter values likely to be encountered586

in practice, there could be alternative ways to describe partial information about shares587

which represent better the modeler’s knowledge in highly uncertain situations. Nonethe-588

less, we find the sampling methods illustrated in the paper are already good enough for589

most use cases, and a substantial improvement to current practice.590

The sampling approach can similarly be used for any task that involves data disag-591

gregation, or the one-to-many allocation in general. As outlined in the introduction, in592

IE research, this includes sampling transfer coefficients in MFA, and disaggregation of593

broader categories of environmental impact to more detailed economic sectors in IOA. In594

LCA, the sum-to-one type constraints can occur in different stages of the analysis. In the595

inventory analysis stage, there may be only aggregated measured data available which596

must be shared between the specific processes modeled (for example, total electricity597

consumption of a factory is measured and must be split between several processes within598

the factory). Similar to the MFA examples, this can be achieved via some proxy data599

(perhaps the total mass output of each process, or their input power ratings) which im-600

plies correlations. Another case is the allocation of impacts to different functional flows601

in LCA in the case of multifunctionality. While this allocation is a normative choice,602

and so not exactly the same as the disaggregation of empirical measurements, it is still603

useful to be represent uncertainty in allocation factors either because the modeler wishes604

to include alternative choices as an element of the total modeling uncertainty, or because605

the allocation factors themselves are uncertain (e.g. prices are imperfectly known when606

applying economic allocation). Jung et al. (2014) has discussed the modeling of uncer-607

tainty in allocation factors using an analytical approach, and the sampling-based methods608

discussed in this paper expand on that to allow more flexibility in the nature of the un-609

certainty. Despite uncertainty analysis being relatively common in LCA (compared to IO610

and MFA), the uncertainty of those allocations is currently not included in most uncer-611

tainty analyses. Kim et al. (2025) who model the uncertainty of market mixes in LCA612

marks a very recent exception, yet their sampling could be made more coherent and flex-613

ible with the procedure presented in this paper e.g. by allowing different uncertainties for614

different shares using the generalized Dirichlet distribution.615

Through the implementation in the form of the Python package maxent disaggregation616

and R-package MaxentDisaggregation accompanying the paper, the approach can easily617

be incorporated into most MC workflows. With that, we hope to contribute to lowering618

the technical barrier to conduct uncertainty analysis of IE models, transitioning uncer-619

tainty assessment from an optional add-on to a standard practice in IE studies.620
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