

HVMAPS for Mu3e and beyond

Heiko Augustinfor the Mu3e Collaboration Physikalisches Institut Heidelberg

Vienna Conference on Instrumentation 2025

19.02.2025

Mu3e: Physics Motivation

- Search for the cLFV decay μ⁺→ e⁺e⁻e⁺ (vSM: BR < 10⁻⁵⁴)
- Current limit (SINDRUM) BR < 10⁻¹² @ 90% CL
- Sensitivity goal (Phase1):
 1 in 10¹⁵ decays
- Up to 10⁸ decays per second
- Suppress background below sensitivity level

More on Mu3e! Elizaveta Nazarova →Tuesday 18.2. Sandro Bravar →Thursday 20.2.

The Mu3e Detector

- 10⁸ decays per second
- $p_{max} = m_{\mu}/2 = 53 \text{ MeV}$
 - Multiple CoulombScattering
 - → Triplet Track Fit [arXiv:1606.04990v2] [arXiv:2406.05240v2]

- Good vertex and time resolution (100 μm & 500 ps)
- Excellent momentum resolution (0.5 MeV)
- Continuous Beam! No trigger!
 - → Online reconstruction and selection

Helium Gas Cooling [arXiv:2301.13813], [arXiv:2307.14803]

Market

The Mu3e Detector

Pixel detector requirements:

Pixel Size	Time Resolution	Material Budget	Efficiency
80 x 80 μm ²	< 20 ns	0.1% X ₀ /layer	> 99 %

Mu3e TDR [arXiv:2009.11690v3]

- 10⁸ decays per second
- $p_{max} = m_u/2 = 53 \text{ MeV}$
 - Multiple CoulombScattering
 - → Triplet Track Fit [arXiv:1606.04990v2] [arXiv:2406.05240v2]

- Good vertex and time resolution (100 μm & 500 ps)
- Excellent momentum resolution (0.5 MeV)
- Continuous Beam! No trigger!
 - → Online reconstruction and selection

Helium Gas Cooling [arXiv:2301.13813], [arXiv:2307.14803]

Ma

Tracking System - Vertex Detector Layer 0+1

Chips glued and bonded High Density Interconnects (HDIs)

- 6 for layer 0 and 1
- 17/18 for layer 2 and 3
- 50 µm thin
- Connection via interposers (pressed against RO flexes)

Tracking System - Vertex Detector Layer 0+1

Chips glued and bonded High Density Interconnects (HDIs)

- 6 for layer 0 and 1
- 17/18 for layer 2 and 3
- 50 μm thin
- Connection via interposers (pressed against RO flexes)

High Voltage - Monolithic Active Pixel Sensors

- Commercial HV-CMOS processes: TSI 180nm (h18)
- Deep N-well diode (large fill factor)
- Low Ohmic substrates (10-400 Ω cm)
- High voltages up to 100V
- Charge collection via drift

- In-pixel electronics
- Monolithic design: Detection and Readout combined in one chip
- Chips are thinned to 50 µm

MuPix/HV-MAPS R&D process

The MuPix Sensor

- Clear separation of analog and digital electronics
- 2 comparator design
- Tuning/Trimming and masking available
- Priority encoder / column-drain readout
- Chip sub-divided into 3 matrices → 1 Data link each + 1 multiplexed link

Courtesy: Frank Meier

- Deposited charge amplified by in-pixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout statemachine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by in-pixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout statemachine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by in-pixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout statemachine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by in-pixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout statemachine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by in-pixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout statemachine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by in-pixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout state machine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by in-pixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout state machine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by in-pixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout statemachine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

MuPix10 & MuPix11

Pixel size [µm²]	80 x 80				
Sensor size [mm²]	20.66 x 23.18				
Active size [mm²]	20.48 x 20.0				
Pixel matrix	256 x 250				
Thickness [µm]	50, 70				
Substrate [Ω cm]	80, 370				
Data links	3+1				
Data speed [Gbit/s]	1.25				
Time-of-arrival [bits]	11				
ToT [bits]	5				
TS binning [ns]	8 (option for 1.6)				

Market

From MuPix10 to MuPix11

- Removal of R&D features
 - → More pads for powering
- Improvement of powering grid
 - → Less on-chip voltage drop
- Buffering of data lines
 - → Full speed readout30 MHits/s per sub-matrix
- Re-synthesis of State machine
 - → Fast configuration interface available
- Re-done pixel point-to-point connection
 - → Reduced delays and parasitic couplings

Sensor Characterisation

- Lab commissioning
- Lab optimisation: Radioactive sources: ⁵⁵Fe, ⁹⁰Sr Time coincidence
- Testbeam Campaigns:
 DESYII (Hamburg, GER)
 MAMI (Mainz, GER)
 PSI piM1 (Villigen, CH)
- MuPix-Telescope
- Mimosa/Alpide-Telescopes

Summary - Results MuPix10

Hit readout delay: Hit Chronology

[arXiv:2012.05868] & 10.7566/JPSCP.42.011020

MuPix11 - 50 μ m - 80 Ω cm (Vertex detector)

MuPix11 - 70 μ m - 370 Ω cm (Outerlayers)

MuPix Fast Configuration Interface

- Chips of a ladder share a bus of clock, synchronous reset and configuration input
- Custom configuration protocol
- Commands interleavable
- ~400ms configuration time for 9 chip ladder
 ⇒ Configuring the ladder is not a bottleneck
- On-going development for future use

MuPix Fast Configuration Interface

- Chips of a ladder share a bus of clock, synchronous reset and configuration input
- Custom configuration protocol
- Commands interleavable
- ~400ms configuration time for 9 chip ladder
 ⇒ Configuring the ladder is not a bottleneck
- On-going development for future use

MuPix Fast Configuration Interface

- Chips of a ladder share a bus of clock, synchronous reset and configuration input
- Custom configuration protocol
- Commands interleavable
- ~400ms configuration time for 9 chip ladder
 ⇒ Configuring the ladder is not a bottleneck
- On-going development for future use

SIn		Input data		Input data		Input data		Input data
Chip0	Idle	Read & Interpret	X	Execute Task			Idle	Read & Interpret
Chip1	Idle	Read & Interpret	Idle	Read & Interpret			Execute Ta	sk
Chip3	Idle	Read & Interpret	Idle	Read & Interpret	Idle	X	E	xecute Task
Chip4	Idle	Read & Interpret	Idle	Read & Interpret	Idle	X	E	xecute Task
								Generated with WaveDrom

Configuring the Mu3e Central Pixel detector

- The bottleneck is to get the data to the chip
- Firmware optimisation towards data preparation
- Detector currently configurable < 4s (emulated detector)

On-chip ADC

- ADC programmable through Mu3e configuration interface
- Allows measurement of on-chip voltages
- Data send out via 1.25 Gbit/s data links
- ADC shows a good linearity

Me

45.0°C

_ 38

36

_ 34

32

30

24

22,1°C

On-Chip Temperature Measurement

45.0°C

_ 38

36

_ 34

32

30

24

22,1°C

On-Chip Temperature Measurement

Vertex Detector Status

Photos from Thomas

Outlook - Future of HVMAPS

TelePix2, P2Pix, explore new foundries, Conditions Mu3e Phase

MuPix11 a sensor of

Stuff from luigis review poster

Mu3e ~ 150 Wafers

ion into the Mu3e Magnet

First Installation of the Mu3e Vertex Detector (December 2024)

Re-Roadmap

Moeller, P2, Panda, MuSR [MKref], Telescope-Maintenance

- \rightarrow P2Pix
- $\rightarrow \text{MightyPix}$
- → Mu3e Phase 2

Types

Xfab

Summary & Outlook

- Successful transition from MuPix10 to MuPix11
 - Everything functional, expected to fulfill Mu3e requirements
- QC procedures have been developed and implemented
 - First successful test of needle card for large volume testing
- Production of Vertex ladders started
 - First in-beam test still this week
 - Full vertex detector expected in Spring
- First ladders of outer pixel layers expected in Spring
- Start with detector commissioning next year

Backup

Experimental sensitivity

Invariant mass of signal decay, radiative decay and accidental background (Bhabha+Michel)

Momentum resolution crucial for detecting the peak at muon mass...

Material budget is key factor!

1 MeV resolution with 0.1% * X/X₀ per layer

Mu3e TDR at Nucl.Instrum.Meth.A 1014, 165679

- 10⁸ decays per second
- $p_{max} = m_{\mu}/2 = 53 \text{ MeV}$
 - Multiple CoulombScattering
 - → Triplet Fit [arXiv:1606.04990v2]

- Good vertex and time resolution (100 μm & 500 ps)
- Good momentum resolution (0.5 MeV)
- Continuous Beam! No trigger!
 - Online reconstruction and selection

- 10⁸ decays per second
- $p_{max} = m_{\mu}/2 = 53 \text{ MeV}$
 - Multiple Coulomb Scattering

 $p_{mc} [MeV/c]$

Triplet Fit [arXiv:1606.04990v2]

- Good vertex and time resolution (100 µm & 500 ps)
- Good momentum resolution (0.5 MeV)
- Continuous Beam! No trigger!
 - Online reconstruction and selection

cLFV - Landscape

updated?

PSI - Beamline Upgrades

updated

IMPACT Timeline

Quad - Module Telescope

A MuPix Module

My

- Chips glued and SpTAB-bonded to flexprint
- No additional components!
- 1.15‰ X₀ per layer
- Minimize dead space between the chips
- Only 11 µm dead silicon outside the guardring
- Power consumption limited to 400 mW/cm² (Sensors+Flex)

The Flexprint Environment

- 2 layer aluminum polyimide flexprint (LTU)
- Provides: Power & HV (parallel) Differential Signal I/O
- Only 1 supply voltage, but no LDO-regulators!
- Minimise I/O
- Flex design rules define PadOut

Signal Line Crosstalk - MuPix8

Triple Crosstalk: hit induced in both neighbouring lines

Routing Optimisation - MuPix10

- Equalize but reduce crosstalk
 →miminise the length that two line are
 neighbouring
 (¼ of total length, 2cm)
 - ~12% triple crosstalk expected
- Make Crosstalk easily detectable

 → neighbouring signal lines are not
 neighbouring pixels
 - Crosstalk can be removed, possibly already during the data taking
- Even more improvement expected for MuPix11

Beyond MuPix11 - Roadmap -- Architectures

In-pixel

Periphery

Proto Vertex Detector

- First proto-detector with 6 chips modules
 - Still PCB based!!!

- Two layer vertex detector (MuPix10)
 - Gain operational experience
 - Test Mu3e readout chain

Operation in experimental conditions

DAQ and experimental concept

Operation in experimental conditions

Production of inner layers

Heidelberg/PSI

Quick demo: https://youtu.be/0SYqHSbH3U4

Production of outer layers

Oxford/Bristol/Liverpool

Quality Control (QC)

- Quality assurance is key before a large scale detector assembly
- Testing after assembly is too risky and costly, since dismantling is impossible
- Press down mechanism with contact needles for prior testing

QC - Test procedures

- 2 Single Chip test sites
- First needle card test station being setup in Oxford
- QC procedure still being refined, but almost final
- Grading scheme still adjusting (pre-production)

The Vertex Detector

- First Vertex ladders have been produced
- Ladder QC under development in parallel to single chip QC
- Fully functional 50µm ladder in Hand
- Currently running beam time at PSI:
 First time in-beam commissioning of final ladder

Mge

Tracking System - Vertex Detector Layer 0+1

Chips glued and bonded High Density Interconnects (HDIs)

- 6 for layer 0 and 1
- 17/18 for layer 2 and 3
- 50 μm thin
- Connection via interposers (pressed against RO flexes)

In-House Wafer Handling

 Diced and thinned wafers delivered on tape

- Equipement:
 - Vacuum chuck
 - Pick-up tools (tweezer & suction pen)
 - A lot of patience & time
- Pending on use case thickness vary between 50μm to 100μm + 750μm

Mu3e ~ 150 Wafers

