The search for Charge Lepton Flavour Violation with

The Mu3e Experiment

Tamasi Kan

On behalf of the Mu3e Collaboration

17th - 23rd of August 2025

Rencontres du Vietnam

4th Flavour Physics Conference 2025

Outline

Charge Lepton Flavour Violation

Mu3e Kinematics and Backgrounds

The Mu3e Detector

Current Status June 2025 Commissioning Run Highlights

Tentative Schedule

Charge Lepton Flavour Violation

Be

A sign for Physics Beyond the Standard Model ...

- > Lepton Flavour Violation (LFV) is established: Neutrino Oscillations
- \hookrightarrow Charge Lepton Flavour Violation (**cLFV**) in the e- μ transition is heavily suppressed in the SM+neutrino mixing: $\Gamma \propto \left(\frac{\Delta m_{\nu}^2}{m_W^2}\right)^2 \sim \mathcal{O}(10^{-54})$

Illustration: © Johan Jarnestad/The Royal Swedish Academy of Sciences

SM process via neutrino mixing

Charge Lepton Flavour Violation

A sign for Physics Beyond the Standard Model ...

- > Lepton Flavour Violation (LFV) is established: Neutrino Oscillations
- Sharge Lepton Flavour Violation (**cLFV**) in the e- μ transition is heavily suppressed in the SM+neutrino mixing: $\Gamma \propto \left(\frac{\Delta m_{\nu}^2}{m_{\text{\tiny TMZ}}^2}\right)^2 \sim \mathcal{O}(10^{-54})$

MEG/MEG II (PSI) B($\mu^{+} \rightarrow e^{+}\gamma$) < **1.5** · **10**⁻¹³

 $\mu^+ \rightarrow e^+ \gamma$

 $\mu^- \mathrm{N}
ightarrow e^- \mathrm{N}$

SINDRUM II (PSI)

$$B(\mu^{-} Au \rightarrow e^{-} Au) < 7 \cdot 10^{-13}$$

(2006)

 $\mu^+ \rightarrow e^+ e^- e^+$

SINDRUM (PSI)

$$B(\mu^{+} \rightarrow e^{+} e^{-} e^{+}) < 1.0 \cdot 10^{-12}$$

(1988)

BSM processes involving supersymmetric particles in loop and at tree level

Mu3e

Branching ratio sensitivity goal $(\mu^{+} \rightarrow e^{+}e^{-}e^{+}) \sim 10^{-16} \rightarrow \text{In two phases}$

 \Rightarrow Improvement by up to 4 orders of magnitude compared to the current limit

How do we achieve this sensitivity goal?

- Seed muons (a lot of muons!)
 - Paul Scherrer Institute in Switzerland:
 - → Highest intensity continuous muon beamline
 - → Currently available ~ 10⁸ µ/s
 - Phase I goal: BR($\mu^{\dagger} \rightarrow e^{\dagger}e^{-}e^{+}$) ~ $\mathcal{O}(10^{-15})$
 - → Need at least $10^8 \mu/s$
 - Phase II goal: BR($\mu^{\dagger} \rightarrow e^{\dagger}e^{-}e^{+}$) ~ $\mathcal{O}(10^{-16})$
 - → Need at least 2 x $10^9 \mu/s$
 - → High Intensity Muon Beamline (HIMB) ~ 10¹⁰ μ/s
- 1. Need an experiment with a detector technology that can handle such high rates!

 $\mu^{+} \rightarrow e^{+}e^{-}e^{+}$ Signal Kinematics ...

- \hookrightarrow 4-momenta sum (ΣP_e) ≈ (m_μ ,0, 0, 0)
- \rightarrow Maximum momentum of $e^{+/-}$: ½ m_{μ} (~53 MeV/c)
- > Should originate from a common vertex and at the same time

Challenge: Low momentum electrons and positrons

⇒ Multiple Coulomb scattering effects dominate

Mu3e

Background processes mimicking the e⁺e⁻e⁺ final state

> Accidental combinatorial background

- Muon decays (~100%) via $\mu^{\dagger} \rightarrow e^{\dagger} v \overline{v}$
- Accidental combinations of e⁺ from μ⁺ → e⁺ v v̄ decay(s) with an e⁻ or e⁺e⁻ originating from:
 - Bhabha scattering
 - photon conversion
 - mis-reconstruction

Two Michel decays + e-

Michel decay + Internal Conversion

- 2. Need very good timing and vertexing!
 - ⇒ Low material, continuous muon beam

Mu3e

Background processes mimicking the e⁺e⁻e⁺ final state

> Internal conversion background

- Rare muon decay $B(\mu^+ \rightarrow e^+e^-e^+ v \overline{v}) = 3.4 \times 10^{-5}$
- Have a common vertex and are coincident
- Distinguishable only by the missing momentum carried by neutrinos

3. Need excellent momentum resolution! $(\sigma_p < 1.0 \text{ MeV/c})$

Technology choice

 Need an ultra light detector technology that can handle high rates

I. Peric et al., NIMA 582 (2007) 876

High Voltage - Monolithic Active Pixel Sensors

- Detection and readout in the same unit
- Uses a high voltage commercial process
- Fast charge collection via **drift**
- Can be thinned to ~ 50 μm

Mupix11

- Size: 20 x 23 mm², thickness: 50 μm, 70 μm
- $\sim 0.05\% X_0$
- Pixel size: 80 x 80 μm²
- Time resolution: ~20 ns
- hit efficiency > 99%

How do we measure $\mu^{\dagger} \rightarrow e^{\dagger}e^{\dagger}e^{\dagger}$?

Technology choice

- Need an ultra light detector technology that can handle high rates
- Very good timing resolution ~ \(\mathcal{O}(100) \) ps

SciFi ribbon cross-section

Wrapped Sci Tiles

SiPM array

Scintillating Tiles

- ~0.5 cm³ scintillating tiles
- Each tile read out by its own Silicon Photomultiplier (SiPM) with custom ASIC (MuTRiG)
- Time resolution: ~ 80 ps

MuTRiG: Muon Timing Resolver including Gigabit-link

Scintillating Fibres

- Each ribbon: three layers of staggered fibres
 - \rightarrow 250 µm fibres diameter, < 0.02% X_0
- SiPM based readout on both ends with custom ASIC (MuTRiG)
- Time resolution: ~ 250 ps

Need very good momentum resolution

Mu3e Tracking Concept

- > Tracking in a homogeneous B-field of 1 T
- Solution High granularity pixel tracker (80 x 80 μm²): 3D space point
- Tracking in multiple scattering dominated environment
 - Ultra thin pixel tracker with only four layers
 - Gaseous helium environment
- > Optimise for precision and acceptance (momentum)

The Muon Stopping Target

Muon stopping target

- Double hollow cone aluminised mylar muon stopping target (length: ~10cm, diameter: 3.8cm)
 - → maximum muon stopping (stopping fraction ~ 95.5%)
 - → minimum material in flight direction of electrons (~0.15% X₀)
- Decay vertices are well **spread out**
 - → reduce combinatorial background & even occupancy in vertex layers

Central Pixel Tracker

- \rightarrow ~ 0.1% X_0 per layer
- Four or five ladders form a module
- Two inner pixel layers close to the target for precise vertexing (~ 200μm)
- Two outer pixel layers optimised for good momentum resolution and high p acceptance
- Cooled to ~0°C by low-density gaseous helium.

Vertex module

The Scintillating Fibre Detector

SciFi ribbon prototype

SciFi module consisting of two ribbons (CAD rendering)

- Placed so as to minimise the MS effects.
- Timing + resolves the rotational direction (i.e., the charge) of the recurling tracks in the central region of the Mu3e detector by time of flight measurements.
- 128 fibres per ribbon, each measuring 30 cm in length
 - → 256 channels per SciFi ribbon
 - → cooled with Silicon oil < 0°C to reduce dark-count rate

The Recurl Pixel Layers

- Increases the acceptance in the polar direction
- Further improves the momentum resolution < 1MeV/c
 - → reconstruction of **recurling tracks**

The Scintillating Tile Detector

- P
 - Placed at the end of the recurling particle trajectory
 - → not critical w.r.t the amount of material, hence can be thick
 - → provides the most precise timing information
 - 416 SciTiles form a SciTile module.
 - → cooled with Silicon oil < 0°C to reduce dark-count rate

Full tile detector exploded view CAD rendering

endrings

Mu3e Data Acquisition (DAQ)

Heart of the experiment...

Mu3e DAQ Design

- Synchronises data from all sub-detectors
- Fully streaming DAQ → triggerless readout
- Network of FPGAs and optical links
- Collect all data of a time slice on one PC
- GPU Filter Farm for online event selection
 - track reconstruction & vertexing
- Write interesting events to disk

Current Status as of June 2025

Sub-systems	Produced (Required)
Vertex Detector	18 ladders (18)
Outer Pixel Detector Central station	0 ladders (24 + 28 = 52)
Outer Pixel Detector Recurl Station	0 ladders (2 x (24 + 28) = 104)
SciFi Detector	6 modules (6)
SciTile Detector	4 modules (2 x 7 = 14)

Pre-production of Outer layers have already started!

Most services independent of the sub-systems, e.g. the Magnet and the Helium cooling infrastructure are ready and have been tested in the commissioning run in June!

Minimal Detector Configuration

Installed in the June 2025 Commissioning Run:

- Target
- Full vertex detector: 108 (50 µm thick) Mupix 11 sensors
- One out of six SciFi modules

• Three out of fourteen SciTile modules

Recurl pixel layers

Scintillating tiles

Inner pixel layers

Jarget

Scintillating fibres

Outer pixel layers

Current Status of the Mu3e Experiment

The full vertex detector commissioned

2/12 Scifi ribbons commissioned

3/14 Scitile modules commissioned DS

Tamasi Kar, PI Heidelberg

17 - 23.08.2025, Rencontres du Vietnam

Successful Commissioning

- \hookrightarrow The minimal detector configuration saw three weeks of μ^{\dagger} beam in June
- → Many first-time operational experiences were made
 - Sub-system operations in **B-field (1 T), gaseous helium cooling, & beam**.
 - Sub-system **synchronisation** and **DAQ** consolidation.
 - Online track reconstruction with the **GPU Filter Farm**!
 - Tuning, debugging & online monitoring tool development.
 - A few days of stable data taking and beam rate scans: $10^4 10^7 \,\mu^*/s$.

Helium compressor rack

Successful Commissioning

- → Hit Maps of Layer 1 and Layer 2 of the vertex detector
 - All 108 Mupix11 chips installed
 - 4 chips had mechanical damage before installation
 - 12 chips were unstable
 - 10 chips were lost before/during the operation
 - A few others showed link instabilities or were inefficient

Vertex Detector Hit Maps for Layer 1 and Layer 2

Tracking with the Mu3e vertex detector alone

- > Short tracks are reconstructed by fitting 4-hit combinations
- 4-hit tracks 1221 (outside-in) and 2112 (inside-out) are combined to form 6-hit tracks
- (n+2)-hit tracks: combine n-hit tracks with matching 4-hit track combinations

Momentum distribution measured with the vertex detector

First preliminary analysis result from the commissioning run...

- → Measured momentum distribution for 6-, 8-, 10- and 12-hit long tracks
- > Many factors affect the shape of the distribution, e.g. :
 - sensor efficiency and noise
 - track direction (θ and φ)
 - misalignment
 - •
- > Planned improvements: use Monte Carlo simulations to model and correct for these effects

Re-weighted momentum distribution measured with the vertex detector

First preliminary analysis result from the commissioning run...

- > The momentum distribution is re-weighted using a very simple ansatz to correct for the
 - limited polar angle of the vertex detector $\propto \frac{1}{R_{3D}} = c_{3D}$
 - momentum dependence of a misaligned detector

$$\propto \frac{1}{R_{3D}^2} = c_{3D}^2$$

Re-weighted momentum distribution for n-hit tracks

Note: R_{3D} and c_{3D} are reconstructed 3D radius and curvature of a track

The exact run period for 2026 is to be decided 2031 2030 2029 2028 2027 2026 2025 **Tentative** Mu3e Schedule HIPA shutdown Minimal Configuration (commissioning) **Production Outer Pixel Central Production SciTiles** Phase Phase 0 data taking Production Outer Pixel Recurl Consolidation (HW & SW) Phase I data taking

What's Next?

Note: "Phase" refers to detector configuration/setup

move experiment to HIMB

Phase 0 Detector Setup

Be

For Data Taking in 2026

Phase 0

Phase 0 projection of SES vs Data taking days

Surpass the SINDRUM limit in less than two weeks

Phase I

Phase I projection of SES vs Data taking days

~ 1 year of data taking to find or exclude $\mu^+ \rightarrow e^+e^-e^+$ at branching ratio above 10⁻¹⁵

Be

Ongoing Activities

In preparation for the Phase 0 detector setup

- → Hardware activities
 - Vertex version 2 production with 70 μm Mupix11 sensors
 - Outer pixel central station ladder production
 - Tile module production for the downstream
- Software activities
 - Analysing June 2025 dataset
 - Ensure software readiness for 2026 data taking

Stay tuned!

Automated sensor positioning on outer pixel ladders using a gantry

Automated gluing procedure

Summary

- A successful commissioning run in June with a minimal detector configuration
 - All sub-systems partially installed and operated in a magnetic field and helium environment!
 - DAQ consolidation
 - GPU Filter Farm tested for rates up to $10^7 \,\mu^{\dagger}/s$
 - Successfully reconstructed tracks with the **thinnest** (0.001 X₀ / layer) vertex detector currently operational

A few from the core hardware team that played a significant role in the success of June beamtime!

Thank you!

Bibliography

→ Mu3e:

- K. Arndt et al., "*Technical design of the phase I Mu3e experiment*," Nucl. Instrum. Meth. in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 1014, p.165679, 2021/10/21/ 2021, DOI: https://doi.org/10.1016/j.nima.2021.165679.
- Niklaus Berger, Moritz Kiehn, Alexandr Kozlinskiy, and Andre Schöning. 2017. "A New Three-Dimensional Track Fit with Multiple Scattering." Nucl. Instrum. Meth. A 844, (2017), 135. DOI: https://doi.org/10.1016/j.nima.2016.11.012
- A. Schöning, "A general track fit based on triplets" Nucl.Instrum.Meth.A 1075 (2025) 170391 DOI: https://doi.org/10.1016/j.nima.2025.170391

SINDRUM I:

U. Bellgardt et al., "Search for the Decay μ⁺ -> e⁺ e⁻", Nucl. Phys. B, vol. 299, pp. 1–6, 1988,
 DOI: https://doi.org/10.1016/0550-3213(88)90462-2

S BR for CLFV

Calibbi L, Signorelli G (2018) "Charged Lepton Flavour Violation: An Experimental and Theoretical Introduction." Riv Nuovo Cim 41:71–174. DOI: https://doi.org/10.1393/ncr/i2018-10144-0

Backup...

- \hookrightarrow Ultimate sensitivity for the BR ($\mu \to e^+e^-e^+$) ~ 10^{-16} requires 20 times higher beam rate
 - \rightarrow 2 x 10⁹ μ /s
 - Accidental background (Bhabha scattering + Michel decay) will increase by 20 x 20 = 400 (without any detector improvements)
- > Possible suppression of the accidental background by:
 - increase length of muon stopping target: x 1/3
 - reduce transverse thickness of muon stopping target: x 1/4
 - [reduce material in first tracking layer]: [x 2/3]
 - improve vertex resolution: x 1/2
 - o improve momentum resolution: x 1/2
 - improve time resolution: x 1/3
 - \rightarrow combined suppression: x 1/300 (optimistically) \rightarrow needs to be studied in detail!

Magnet parameter	VALUE
nominal field	$1.0\mathrm{T}$
warm bore diameter	$1.0\mathrm{m}$
warm bore length	$2.7\mathrm{m}$
field inhomogeneity $\Delta B/B$	$\leq 10^{-3}$
field stability $\Delta B/B$ (100 days)	$\leq 10^{-4}$
field measurement accuracy $\Delta B/B$	$\leq 2.0 \cdot 10^{-4}$
outer dimensions: length	$\leq 3.2\mathrm{m}$
width	$\leq 2.0\mathrm{m}$
height	$\leq 3.5\mathrm{m}$

Requirements

31-ton mu3e magnet