

Physik-Institut

Construction and Calibration of the Mu3e Vertex Detector

ÖPG-SPS Meeting

Vienna 2025

Thomas Christian Senger

Probing the standard model with Mu3e

- Search for the Charged LFV decay $\mu \rightarrow eee$
 - Highly suppressed in the SM + neutrino mixing

•
$$\Gamma \propto \left(\frac{\Delta m_{\nu}^2}{m_W^2}\right)^2 \approx \mathcal{O}(10^{-54})$$

• Best current upper limit $\mu \rightarrow eee \approx 10^{-12}$ @90%C.L. from SINDRUM in 1988

Goal of Mu3e

- Improve limit by 3 to 4 orders of magnitude
- $\mu \to eee \approx 2 \times 10^{-15}$ in phase I (Start 2026 -2029)
- $\mu \to eee \approx 10^{-16}$ in phase II (2029+)

The Mu3e detector

- Hollow double cone stopping target
- Homogeneous solenoidal magnetic field (1T)
- 10⁸ muon decays per second with continuous beam

- 4 layers of pixel sensors
- Helium Gas Cooling
- Excellent momentum resolution (0.5 MeV/c)

- Scintillating fibres and tiles
- Good vertex and time resolution (250 µm & 100 ps)

Mu3e Vertex Detector

- Two layers of 50μm thin Mupix 11 pixel sensors
 - High-Voltage Monolithic Active Pixel Sensor (HV-MAPS)
 - Detection and Readout combined in one chip
 - Fully digital 1.25Gbit/s LVDS output
 - 99% efficiency with less than 20ns time resolution
- Mechanical support with least material budget as possible
 - $X/X_0 \approx 0.12 \%$ per layer
 - Aluminized Kapton interfaces
 - Sensors glued on foils + spTAB for electrical connection
- DAQ to sensor connection via micro-twisted pair cables and other flexes produced through standard processes

The Mu3e Vertex Detector

Physik-Institut

Calibration

Signal transmission challenge

- Need to transmit all differential LVDS data over μTP cables
 - Space limitations
 - Comparable to the thickness of a hair
 - Used in the CMS experiment at much lower data readout rate (Factor 10 lower)
- Huge challenge to transmit data errorfree
 - Loss of up to 70% of signal amplitude at maximum data rate (1.25 Gbit/s)
- Can be partially recovered through chip internal preemphasis (VNLVDSDel) + signal amplification (VNLVDS)
 - With increase of preemphasis eye opening factor increases, but Signal amplitude decreases
 - Signal amplitude saturates at certain DAC setting point
 - Higher settings increase power consumption on chip
- Designed Qualification test for each ladder to check for error free data transmission

Signal transmission challenge

Eye diagramm measurement on a single ladder

Data transmission Scan results of the Vertex Detector

Signal transmission challenge

- Can set a global threshold per chip
 - Set as low as possible to detect small pulses
- Only small plateau region, where chip is operating efficient >99%
- 50 μm thin chips show noisy pixel at even higher thresholds
 - Thinning process
 - Mechanical stress through handling
 - Edge noise (under investigation)
- To reach low thresholds, pixels need to be masked
 - Every masked pixel lowers the total efficiency
- Chips become **unstable** at low thresholds
- In-pixel tuning is essential for operation with 50 μ m thin sensors

- Can set a global threshold per chip
 - Set as low as possible to detect small pulses
- Only small plateau region, where chip is operating efficient >99%
- 50 μm thin chips show noisy pixel at even higher thresholds
 - Thinning process
 - Mechanical stress through handling
 - Edge noise (under investigation)
- To reach low thresholds, pixels need to be masked
 - Every masked pixel lowers the total efficiency
- Chips become **unstable** at low thresholds
- In-pixel tuning is essential for operation with 50 μ m thin sensors

- Would like to tune all pixels, but edge pixels dominate
- Strategy
 - Mask pixels above a certain threshold
 - Tune pixels below until target working point is reached
 - **Trade-off**: could tune more pixels, but tuning range becomes too coarse (3bit range, 8 values)
- Need to determine highest efficiency point per chip
- Full vertex tuning takes ~10 h
- At low thresholds: data errors (8b/10b, disparity, phase)
 - → noise patterns visible
- Ongoing MuPix11 noise studies

All 108 chips installed

- 75 % of the submatrices were operational
- Thinnest (0.12% X₀/ layer) vertex detector currently operational
- Many first times
 - We had to learn a lot
 - Were the first to build such a detector
- Planned from the beginning to use the first version for a commissioning run
- Will construct second Vertex Detector for physics data taking

- All 108 chips installed
 - 75 % of the submatrices were operational
- Thinnest (0.12% X₀/ layer) vertex detector currently operational
- Many first times
 - We had to learn a lot
 - Were the first to build such a detector
- Planned from the beginning to use the first version for a commissioning run
- Will construct second Vertex Detector for physics data taking

Summary and Outlook

- Successful 3 weeks of commissioning run in June with a minimal detector configuration
 - SciFi + SciTiles detector partially installed and commissioned
- Successfully reconstructed tracks after detector calibration + tuning
 - First analysis is ongoing
 - Results + publication will follow
- Second Vertex version and outer pixel layers are currently under construction

