

Analyzing Ex-Vessel Steam Explosions During Severe Accidents in Nordic BWRs

16th EMUG: 7-11 April 2025

Govatsa Acharya, Ibrahim Batayneh, Dmitry Grishchenko, Pavel Kudinov

Division of Nuclear Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden

Risk Oriented Accident Analysis Methodology+

- ROAAM+ framework is being developed at KTH to address uncertainties in:
 - Scenarios aleatory.
 - Phenomena epistemic.
- ROAAM+ comprises of:
 - Detailed full models (FMs) for key information about physics.
 - Fast-running surrogate models (SMs) for sensitivity, uncertainty and failure domain analysis.
- ROAAM+ has highlighted:
 - Debris bed coolability needs deep pool of water in cavity.
 - Steam explosion risks necessitates reinforcement of hatch doors in the cavity.

Motivation and Goals

- SMs based on time-independent variables obtained from FMs.
 - Average melt release rate.
 - Maximal loads on containment.
 - Maximum temperature of debris bed.
- Loss of potential information during averaging.
 - Transient nature of phenomena cannot be "averaged".
 - Operator interventions, containment phenomena are time dependent.
- ROAAM+ needs dynamic SMs for effective treatment of transients.
 - Develop coupling scheme to estimate risk of steam explosion on source term.

- Nordic BWR
 - ASEA/ABB Atom based on Westinghouse BWR75.
 - 3900MWth power.
 - 700 fuel elements.
 - 6 radial rings.
 - 19 axial levels.
- RC4 Severe accident initiated by a transient or LOCA with containment failure due to containment phenomena (FCI/basemat melt through)
 - RC4A LOCA: unmitigated
 - RC4B SBO: unmitigated

MELCOR Model Nodalisation

MELCOR-TEXASV Coupling Scheme

MELCOR Data Extraction and Post-Processing

- EDF WRITE to write melt ejection and cavity characteristics for every 0.1s.
- Coarse time-steps considered:
 - 5s period, and 100s period.

Mass-averaged mass flow rate and velocity:

MELCOR variable	Definition	Unit
EXEC-TIME	Absolute time in MELCOR	s
	simulation	
EXEC-DT	Time step value	s
CAV-RHO(CAVITY, HMX)	Density of melt layer in	kg.m⁻
	cavity	3
COR-ABRCH	Vessel breach area	m ²
COR-MEJEC-TOT	Cumulative mass of melt	kg
	ejected to cavity	
COR-T-LP(OXI, CH)	Temperature of oxidic pool	K
	in lower plenum	
COR-T-LP(MET, CH)	Temperature of metallic pool	K
	in lower plenum	
CVH-CLIQLEV('LDW')	Collapsed liquid level of	m
	water in cavity	
CVH-P('LDW')	Pressure in the cavity	Pa
CVH-VOID('LDW', POOL)	Void fraction of the water	-
	phase in the cavity	
CVH-TVAP('LDW')	Temperature of the vapour	K
	phase in the cavity	
CVH-TLIQ('LDW')	Temperature of the water	K
	phase in the cavity	

 $\overline{\dot{M}}_{i} = \left(\frac{1}{\Delta M_{i}}\right) \sum_{i=1}^{N} \frac{\Delta m_{j}^{2}}{\Delta t_{i}}$

- Instances of \dot{M}_i < 50kg/s is filtered out.
- Composition of melt ejected is assumed to be constant and temperature to be 3000K.
- Debris ejection mode:
 - IDEJO default, solid and molten debris is ejected.
 - IDEJ1 only molten debris is ejected.
 - LOCA-IDEJ0, LOCA-IDEJ1, SBO-IDEJ0 and SBO-IDEJ1.
- MELCOR version used:
 - Pathway 1 MELCOR 2.2.18019 no CAV 2.
 - Pathway 2 MELCOR 2.2.r2024.0.3 with CAV 2.
 - Run for 72h from IE.

no-CNT-failure Results

- v2.2.18019 Pathway 1
- COR_EUT TUO2ZRO2
 2450K

- v2.2.r2024.0.3 Pathway 2
- COR_EUT TUO2ZRO2
 2800K

no-CNT-failure Results

- v2.2.18019 Pathway 1
- COR_EUT TUO2ZRO2
 2450K

- v2.2.r2024.0.3 Pathway 2
- COR_EUT TUO2ZRO2
 2800K

• Total premixing calculations:

Period	LOCA-IDEJ0	LOCA-IDEJ1	SBO-IDEJ0	SBO-IDEJ1	Total	
Filtered (MA) Pathway 1		Done				
5s	358	194	465	105	1,122	
100s	28	12	43	9	92	
Filtered (MA) Pathway 2		Ongoing				
5s	311	17	242	98	668	
100s	26	6	34	13	79	

- SE impulse is sensitive to triggering time.
- Premixing is calculated for entire time melt takes to reach bottom of domain.
 - Configurations were saved at each 1ms time-step.
 - SE calculations were done for each of these instances.
- Therefore, SE energetics are treated statistically with 1000's of instances for each premixing time.
- Impulse is calculated for each of these instances to derive empirical CDFs.

Propagation of SE Impulse onto CNT

- TNT equivalence method to calculate impulse generated at scaled distance.
- SE assumed to be represented by underwater TNT explosion: Melt thermal energy > charge of TNT.

 $P_m = K_1 \left(\frac{W_{TNT}^{1/3}}{c}\right)^{\alpha}$

 $e = K_2 W_{TNT}^{1/3} \left(\frac{W_{TNT}^{1/3}}{r}\right)^{\beta}$

 $I = K_3 W_{TNT}^{1/3} \left(\frac{W_{TNT}^{1/3}}{r}\right)^{r}$

12

 SE energy = total energy of melt – total internal energy of water

$$- E_{SE} = \Delta E_{melt} - \Delta e_{water} [J]$$

$$- W_{TNT} = \frac{E_{SE}}{4200000} [kg]$$

• SE source is assumed to be within bounded region:

SE Loads on the Hatch Door

SE near

SE far

Probability of Failure of Hatch Door

ETENSKA

• Fragility limit of non-reinforced hatch door 6kPa.s.

Absolute

CDF

MELCOR Source Term Calculations

• CS and I2 release fractions during LOCA

MELCOR Source Term Calculations

• CS and I2 release fractions during SBO

• CS and I2 release fractions at 72h

v2.2.18019 – Pathway 1

MELCOR Experience

- MELCOR v2.2.18019 Frequent crashes post cavity dryout.
- Modified COR_EUT TUO2ZRO2 temperature from 2450K to 2800K – same results > crashes when CNT fails at different time.
- Later version v2.2.r2023 and v2.2.r2024
 - TUO2ZRO2 2800K.
 - Run to termination without frequent crashes.
 - − Used for Pathway 2 with 2 cavities →
 - Further analysis underway.

MELCOR Experience

- Pathway 1 → different versions with TUO2ZRO2 2450K.
- CS release during LOCA is larger in 18019 than 2023 and 2024, and smaller during SBO.
 - CORSOR-Booth (ICRLSE-5) model used.

- A scheme for dynamic modelling approach within ROAAM+ framework was developed.
 - Data to be used in developing dynamic SM generated.
- Non-trivial release can be observed in certain accident scenarios.
- Feedback of probabilities of SE loads on the debris coolability.
 - Higher probability of SE induced failure of nonreinforced hatch door.
 - Larger potential for SE in IDEJ0 than IDEJ1.
- MELCOR version can impact final CDFs.
 - Analysis of Pathway 2 underway.

Thank you.

- 1. L.L. Humphries, B.A. Beeny, F. Gelbard, D.L. Louie, J. Phillips, R.C. Schmidt and N.E. Bixler, "MELCOR Computer Code Manuals Vol. 1: Primer and Users' Guide Version 2.2.19018", SAND2021-0252 O, Sandia National Laboratories, Albuquerque, NM, 2021.
- L.L. Humphries, B.A. Beeny, F. Gelbard, D.L. Louie, J. Phillips, R.C. Schmidt and N.E. Bixler, "MELCOR Computer Code Manuals Vol. 2: Reference Manual Version 2.2.18019", SAND2021-0241 O, Sandia National Laboratories, Albuquerque, NM, 2021.
- 3. Corradini, M.L., et al., "Users' manual for Texas-V: One dimensional transient fluid model for fuel-coolant interaction analysis", University of Wisconsin-Madison: Madison WI 53706, 2002.
- 4. R.H. Cole, Underwater explosion, Princeton University Press, Princeton, NJ, 1948.
- 5. L. Bjørnø, P. Levin, "Underwater explosion research using small amounts of chemical explosives", Ultrasonics, 14(6), pp. 263-267, 1976.

• H2 generated

TEXAS-V Parameters

Parameter	Range		Description	Units
	min	max		
XPW	4.111	8.423	Water level	m
РО	140891	561528	System Pressure	bar
TLO	334.405	421.966	Water temperature	Κ
RPARN	0.0051	0.1385	Initial jet radius	m
СР	650	650	Fuel heat capacity	J/kg.K
RHOP	5718.27	9320.57	Fuel density	kg/m ³
PHEAT	400 000	400 000	Fuel latent heat	J/kg
TMELT	2800	2800	Fuel melting point	Κ
TPIN	3000	3000	Melt superheat	Κ
UPIN	9.620	13.310	Melt release velocity	m/s
KFUEL	3.000	3.000	Fuel thermal conductivity	W/m.K
CFR	0.0027	0.0027	Proportionality constant for the rate of the fuel fragmentation	_
TFRAGLIMT	0.0025	0.0025	Fragmentation time	ms
ARIY	0.010	7.509	Cell cross sectional area	m ²