
ADVANCED METHODS FOR

STUDYING NUMERICAL

STABILITY
Nikolai Bakouta

Electricité de France (EDF)

nikolai.bakouta@edf.fr

E-MUG Meeting - Brno – 2025, April 7-11th

mailto:jeremy.bittan@edf.fr

Outline

1. Introduction

2. Motivation

3. Advanced methods

4. Perspectives

Introduction

• Verrou is an open-source tool developed by EDF R&D (project InterFLOP) that helps identify floating-

point round-off errors in programs. The latest version can be downloaded from https://github.com/edf-

hpc/VERROU/releases/latest.

• VERROU is an external backend tool developed for Valgrind, which is a programming tool used for

memory debugging, memory leak detection, and profiling. For more information, see

https://en.wikipedia.org/wiki/Valgrind. Running VERROU involves executing Valgrind with VERROU

selected as an external tool:

$ valgrind --tool=verrou [verrou options] {program} [program options]

{program} refers to an executable of interest (e.g. maap.exe)

• The VERROU documentation is available as a dedicated chapter in the Valgrind manual http://edf-

hpc.github.io/verrou/vr-manual.html.

https://github.com/edf-hpc/VERROU/releases/latest
https://github.com/edf-hpc/VERROU/releases/latest
https://en.wikipedia.org/wiki/Valgrind
http://edf-hpc.github.io/verrou/vr-manual.html
http://edf-hpc.github.io/verrou/vr-manual.html

Motivation

VERROU introduces numerical noise (rounding of arithmetic operations on the order of ±10⁻¹⁶) into the

original executable.

No source code is needed. Recompile the executable with -g option.

Basic usage for diagnostic: if the numerical noise amplifies, then the code is unstable.

Diagnostic:

• Run the same calculation multiple times with random

rounding

valgrind --tool=verrou --rounding-mode=random ${MAAP} ${INP}

valgrind --tool=verrou --rounding-mode=random ${MAAP} ${INP}

valgrind --tool=verrou --rounding-mode=random ${MAAP} ${INP}

valgrind --tool=verrou --rounding-mode=random ${MAAP} ${INP}

valgrind --tool=verrou --rounding-mode=random ${MAAP} ${INP}

valgrind --tool=verrou --rounding-mode=random ${MAAP} ${INP}

valgrind --tool=verrou --rounding-mode=random ${MAAP} ${INP}

valgrind --tool=verrou --rounding-mode=random ${MAAP} ${INP}

valgrind --tool=verrou --rounding-mode=random ${MAAP} ${INP}

• Analyze discrepancies in the parameter of interest

Motivation

The diagnostic does not improve numerical stability.

Advanced methods focus on:

• Identifying sources of instability

• Reducing instability

Advanced methods

Controlling the scope of perturbations

Delaying numerical noise with macros VERROU_START_INSTRUMENTATION

#include <valgrind/VERROU.h>

if(tim>start_verrou) {

 VERROU_START_INSTRUMENTATION;

}

start_verrou=5000 start_verrou=5800
Instabilities grow before tim=5800 s =>

valgrind --tool=verrou --instr-atstart=no ${MAAP} ${INP}

• Requires modification of the user program's source code

• Initially, run the program without numerical noise

Advanced methods

Controlling the scope of perturbations

Exclusion files: allows you to avoid perturbing the files described in the exclusion list.

For example, to excluded the math library libm-2.28.so linked to the executable:

• Add the following text to the file libm.ex :

• Run VERROU with the --exclude option

#FNNAME OBJNAME

* /lib/x86_64-linux-gnu/libm-2.28.so

valgrind --tool=verrou --exclude=libm.ex ${MAAP} ${INP}

Advanced methods

Controlling the scope of perturbations

Limit perturbations to specific lines of the source code.

The lines must be declared in the source list file.

For example, to perturb only the cos function from the s_sin.c file, ligne #12:

• Add the following text to the source list file src.inc

• Run VERROU with --source option

#FILENAME LINENUM SYMNAME

s_sin.c 12 cos

valgrind --tool=verrou --source=src.inc ${MAAP} ${INP}

Advanced methods

Delta-debugging: searching for source code line(s) whose perturbation produces the most

significant errors.

Let's consider a simple example:

• Perturbing all subsequent lines results in instability.

• Perturbing only the first three lines results in stability.

Conclusion: instability in the program is caused only by perturbing the fourth line

The first three lines can be ignored.

Advanced methods

More explanation on Delta-Debugging from http://edf-hpc.github.io/verrou/vr-manual.html:

• Provide a complete list of all lines to be perturbed. Exclude from the list all symbols that should

produce unperturbed results (like math library, etc.). The final list is called the search space.

• By splitting the search space in two parts, and perturbing each half separately, it is possible to

determine whether each perturbed half produces inexact results.

• Going on like this and performing a bisection of the search space, the algorithm eventually finds

a subset of functions whose only perturbation is enough to produce inexact results. This Trial

and Error algorithm is called Delta-Debugging.

http://edf-hpc.github.io/verrou/vr-manual.html

Advanced methods

• Reminder: Delta-Debugging helps identify the source code lines whose perturbation causes the most

significant errors.

• Delta-Debugging does not identify where and when an initial microscopic perturbation (±10-16) amplifies

to a macroscopic discrepancy

• While a deep dive into the unstable calculation with a debugger could help track the amplification of the

perturbation, practical use of the debugger (GDB) with Valgrind/VERROU is not feasible.

• Solution: The 'unstable' line of the program can be instrumented to eliminate the need for Valgrind and

enable the use of GDB.

• The term 'instrumented' refers to replacing the intrinsic operator with a VERROU function.

double nfrz = mz / cmn.molwzr; double nfrz = verrou::div(&mz, &cmn.molwzr);

Advanced methods

• The appropriate seed for the 'random' perturbation law can be identified using Delta-Debugging.

• The seed value is then set in the program using the VERROU interface function.

verrou::custom_verrou_init(&seed);

Unstable calculation with

instrumented program
maap_i.exe

Stable calculation with
original program maap.exe

seed=x

Delta-Debugging Valgrind/VERROU GDB

Advanced methods

At this point, we can run two calculations with GDB (without Valgrind/VERROU):

• A stable calculation with the original program

• An unstable calculation with the program modified as previously explained

Analyzing the calculations with GDB allowed for updates to the program to improve its stability.

For example, an empirical correlation can be modified to be smoother vs the reference correlation

Perspectives

• The VERROU interface allows for the creation of an unstable

calculation with the instrumented program. This unstable

calculation can be compared to the stable calculation with

GDB.

• Typically, the stable calculation remains close to the unstable

calculation until a visible macroscopic discrepancy appears.

• Generally, the deviating variable depends on other (hidden)

variables that deviated earlier. In this case, it is necessary to

rerun the calculations to track those variables, and so on.

• This kind of iterative assessment, which relies on human

judgment, is very time-consuming.

Perspectives

The GDB makes this possible as long as the two calculations

are running inside the same debugging session with so-called

inferiors, see https://sourceware.org/gdb/onlinedocs/gdb/Inferiors-

Connections-and-Programs.html#Inferiors-Connections-and-

Programs.

Automatically running both calculations (original versus instrumented) synchronously could help identify the

line where discrepancies become too high.

locals locals

diff locals

• An inferior represents the state of the program. You can switch between inferiors using the command

inferior 1 or inferior 2. Then, you can perform debugger operations on the active inferior, such

as info locals.

• If the discrepancies in locals are close enough, the two calculations move one step forward, and so on.

Otherwise, the calculations halt, allowing the user to analyze the situation with GDB.

• All these steps can be implemented using GDB scripting or Python scripting, which is also available

within GDB.

https://sourceware.org/gdb/onlinedocs/gdb/Inferiors-Connections-and-Programs.html#Inferiors-Connections-and-Programs
https://sourceware.org/gdb/onlinedocs/gdb/Inferiors-Connections-and-Programs.html#Inferiors-Connections-and-Programs
https://sourceware.org/gdb/onlinedocs/gdb/Inferiors-Connections-and-Programs.html#Inferiors-Connections-and-Programs

Thank you for your attention

	Slide 1: Advanced methods for studying numerical stability
	Slide 2: Outline
	Slide 3: Introduction
	Slide 4: Motivation
	Slide 5: Motivation
	Slide 6: Advanced methods
	Slide 7: Advanced methods
	Slide 8: Advanced methods
	Slide 9: Advanced methods
	Slide 10: Advanced methods
	Slide 11: Advanced methods
	Slide 12: Advanced methods
	Slide 13: Advanced methods
	Slide 14: Perspectives
	Slide 15: Perspectives
	Slide 16: Thank you for your attention

