Search

61 - 75 from 194 is displayed
Documentation for the extended search can be found here
X-ray_emission_spectra_5423

Using X-ray emission spectroscopy to study the electronic properties of single atom catalysts

Single atom catalysts hold great promise as O2- or CO2-reduction electrocatalysts, but a deeper understanding of their active sites’ structure and electronic properties is needed in order to render them sufficiently active and stable. To this end, we have used X-ray emission spectroscopy to determine these catalysts’ electronic configuration, and performed in situ measurements that unveil the effect of potential on this key feature.

 

Read more
Conversion efficiency based on the higher heating value (HHV) of hydrogen for the electrochemical water splitting reaction.

Efficient Water Electrolysis at Elevated Temperature using Commercial Cell Components

Decarbonization of the energy system across different sectors using power-to-X concepts relies heavily on the availability of low-cost hydrogen produced from renewable power by water electrolysis. Polymer electrolyte water electrolysis (PEWE) is a promising technology for hydrogen (and oxygen) production for distributed as a well as centralized operation. The total cost of hydrogen is dominated by the electricity cost. Therefore, increase of conversion efficiency is pivotal in improving the commercial viability of electrolytically produced hydrogen. In this study, we investigate the prospects of improving conversion efficiency by reducing the membrane thickness from 200 to 50 micron and increasing the cell temperature from 60 to 120°C.

Read more
Example of a modulation excitation X-ray absorption spectrum and schematic representation of the structural site changes

In situ spectroscopy unveils the structural changes of the sites in single atom catalysts

To improve the performance of single atom catalysts (SACs),  the structure of their active sites under operative conditions needs to be better understood. For this, we have performed in situ X-ray absorption spectroscopy measurements using a modulation excitation approach selectively sensitive to the species involved in the electrochemical reactions. This has allowed us to study the structural changes undergone by two types of SACs, and to tie the observed differences to their catalytic activities.

 

Read more
Electrolyte-dependent differences in current response to applied potential.

Versatile and Fast Methodology for Evaluation of Metallic Lithium Negative Battery Electrodes

Evaluating potential electrolyte candidates is typically a lengthy procedure requiring long-term cycling experiments. To speed this process up, we have investigated potentiostatic lithium plating as a potential method for fast electrolyte suitability investigation. The applications of this methodology is not limited to liquid electrolytes, - effects of solid-state electrolytes, coatings, and other modifications can be readily assessed.

Read more

Erneuerbare Energien: Versuchsplattform ESI startet

Medienmitteilungen Energie und Klima Industriezusammenarbeit Erneuerbare Energien ESI-Plattform PSI-Campus

Diesen Herbst ist es so weit: Die Energy-System-Integration-Plattform am Paul Scherrer Institut PSI nimmt ihren Betrieb auf. Im Rahmen der Doppeltagung „Vernetzte Energieforschung Schweiz“ wurde sie heute den Medien und rund 150 Vertretern aus Politik, Industrie und Wissenschaft vorgestellt.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
Teaser Mobilität von morgen

Des rayons X pour améliorer les propulsions des véhicules

Energie et climat Énergies renouvelables Transition énergétique

Relever les défis de l’avenir, pour le trafic routier suisse, va surtout demander des efforts de recherche. Aux grandes installations du PSI, des chimistes et des ingénieurs étudient comment rendre les propulsions des véhicules plus efficaces et moins polluantes.

Read more