Scientific Highlights
Ground-breaking technology development recognised
PSI researchers win the international Innovation Award on Synchrotron Radiation for 3D mapping of nanoscopic details in macroscopic specimens, such as bone.
Unravelling the catalyst aging phenomena in vehicle emission control.
PSI has collaborated with catalyst and engine manufacturers to understand the aging phenomena of emission control catalysts. To this end, a diesel oxidation catalyst with a relevant mileage was carefully analysed; the results suggest that a complex combination of poisoning and thermal sintering is the cause of deactivation during driving. A reactor setup was then developed to simulate poisoning and sintering effects for prediction of catalyst durability in time and cost effective manner.
Electronic-structure methods for materials design
The accuracy and efficiency of electronic-structure methods to understand, predict and design the properties of materials has driven a new paradigm in research. Simulations can greatly accelerate the identification, characterization and optimization of materials, with this acceleration driven by continuous progress in theory, algorithms and hardware, and by adaptation of concepts and tools from computer science.
Two PSI-Scientists nominated «highly cited researchers»
In the research field “Geosciences”, 143 highly cited researchers were appointed worldwide this year, 7 of them from Switzerland, 2 of them from the Paul Scherrer Institute.
AURORA: from Air pollUtion souRces tO moRtAlity
The Laboratory of Atmospheric Chemistry has initiated innovative data-science-based modelling approaches to discover the most important pollution sources for human health
Amyloid β 42 fibril structure based on small-angle scattering
Alzheimers disease is one of the major global health challenges. Neuronal cell dysfunction and death are connected to the self-assembly of the amyloid β peptide (Aβ42) into oligomeric and fibrillar aggregates. The fibril surface can catalyze the formation of toxic oligomers via secondary nucleation.
LMN PhD student Martin Heinrich wins poster award
PhD student Martin Heinrich of the Molecular Nanoscience group won the best poster award at the Nano-BW 2021 symposium at Bad Herrenalb (Germany), October 6-7. The symposium is held annually within the research network “Functional Nanostructures” of Baden-Württemberg.
Martin introduced his project in the form of a poster titled “Local Manipulation of Spin Domains in a Multiferroic Rashba Semiconductor”. His project started in July 2021 and is funded by the Swiss Nanoscience Institute (SNI) Basel. The poster award was selected by the vote of all attendees.
PSI maintains its leading role in the CLOUD experiment at CERN
The CLOUD experiment at CERN will be recreating particle formation in key regions of the globe to understand the effects of these particles on regional climates
Deciphering the Mechanism of FEC-induced SEI Formation in Li-ion Batteries
Fluoroethylene-carbonate is often referred to as a film-forming electrolyte additive for Li-ion batteries, resulting in high quality Solid–Electrolyte-Interphase on negative electrode, however, the underlying mechanism, even if thought to be known, has been only clarified due to our targeted experimental design, combining systematic electrochemical, chemical and microscopy characterization techniques. We have shown that first the formation of inorganic LiF-rich particles appear and only later the carbonate-rich film is actually formed.
Unconventional Pressure Dependence of the Superfluid Density in the Nodeless Topological Superconductor α-PdBi2
We investigated the superconducting properties of the topological superconductor α-PdBi2 at ambient and external pressures up to 1.77 GPa using muon spin rotation experiments. The ambient pressure measurements evince a fully gapped s-wave superconducting state in the bulk of the specimen. Alternating current magnetic susceptibility and muon spin rotation measurements manifest a continuous suppression of Tc with increasing pressure.