Skip to main content
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Search
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIOpen mainmenu item
    • Research Initiatives
    • Ethics and Research integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsOpen mainmenu item
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Scientific Computing, Theory and Data
    • Large Research Facilities
  • Facilities and InstrumentsOpen mainmenu item
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesOpen mainmenu item
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • New ProjectsOpen mainmenu item
    • SLS 2.0
    • IMPACT
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

You are here:

  1. PSI Home
  2. Labs & User Services
  3. Scientific Highlights

Secondary navigation

Labs & User Services

  • Research at PSI
  • Research Divisions and Labs
  • Facilities and Instruments
    • Large Research Facilities
    • Facilities
  • PSI User Labs
    • Methods and scopes of the Large Research Facilities
    • Proposals for beamtime
    • Proposal Deadlines
    • EU support programmes
    • Data Analysis Service
    • PSI Facility Newsletter
  • Research Initiatives
  • Scientific Highlights Expanded submenu item
    • NUM Highlights
    • PSD Highlights
    • BIO Highlights
    • ENE Highlights
    • NES Highlights
    • SCD Highlights
    • GFA Highlights
    • Scientific Reports
  • Scientific Events
  • Scientific Career
    • PSI-FELLOW
    • PSI Career Return Program
  • PSI Data Policy
  • Useful links

  • Useroffice
  • Digital User Office (DUO)
  • Accelerator status
  • PSIGuesthouse
  • Lib4RI
  • Ethics and Research integrity

Scientific Highlights

Toggle filters
Datum
13 July 2022
Romain Ganter tinkers with the finishing touches of the upgrade to Athos

Athos just got even better

An ambitious upgrade at the soft X-ray beamline of the free electron laser SwissFEL opens up new experimental capabilities.

Read more
12 July 2022
DFO_Banani_072022

Role of Dy on the magnetic properties of orthorhombic DyFeO3

Orthoferrites are a class of magnetic materials with a magnetic ordering temperature above 600 K, predominant G-type antiferromagnetic ordering of the Fe-spin system and, depending on the rare-earth ion, a spin reorientation of the Fe spin taking place at lower temperatures. DyFeO3 is of particular interest since the spin reorientation is classified as a Morin transition with the transition temperature depending strongly on the Dy-Fe interaction. Here, we report a detailed study of the magnetic and structural properties of microcrystalline DyFeO3 powder and bulk single crystal using neutron diffraction and magnetometry between 1.5 and 450 K. We find that, while the magnetic properties of the single crystal are largely as expected, the powder shows strongly modified magnetic properties, including a modified spin reorientation and a smaller Dy-Fe interaction energy of the order of 10 μeV. Subtle structural differences between powder and single crystal show that they belong to distinct magnetic space groups. In addition, the Dy ordering at 2 K in the powder is incommensurate, with a modulation vector of 0.0173(5) c∗, corresponding to a periodicity of ∼58 unit cells.

Read more
12 July 2022
Highlight_Morillo_Candas

Widely tunable two-color x-ray free-electron laser pulses

SwissFEL team has demonstrated the generation of widely tunable two-color x-ray free-electron laser (FEL) pulses with unprecedented photon energy ratio between the two colors of about three (350 and 915 eV), in addition to a tunable time separation between the two pulses from negative time delays to up to 500 fs. These new capabilities open new opportunities to study ultrafast x-ray-induced energy transfer and relaxation processes in physics, chemistry, and biology.

Read more
12 July 2022
La_LaO_vs_press_plasma

New Insight into the Gas Phase Reaction Dynamics in Pulsed Laser Deposition of Multi-Elemental Oxides

The gas-phase reaction dynamics and kinetics in a laser induced plasma are very much dependent on the interactions of the evaporated target material and the background gas. For metal (M) and metal–oxygen (MO) species ablated in an Ar and O2 background, the expansion dynamics in O2 are similar to the expansion dynamics in Ar for M+ ions with an MO+ dissociation energy smaller than O2. This is different for metal ions with an MO+ dissociation energy larger than for O2. This study shows that the plume expansion in O2 differentiates itself from the expansion in Ar due to the formation of MO+ species. It also shows that at a high oxygen background pressure, the preferred kinetic energy range to form MO species as a result of chemical reactions in an expanding plasma, is up to 5 eV.

Read more
7 July 2022
igor_inorganic_chemistry_2022

Competing Magnetic Phases in LnSbTe (Ln = Ho and Tb)

The interplay between a topological electronic structure and magnetism may result in intricate physics. In this work, we describe a case of rather peculiar coexistence or competition of several magnetic phases below seemingly single antiferromagnetic transition in LnSbTe (Ln = Ho and Tb) topological semimetals, the magnetic members of the ZrSiS/PbFCl structure type (space group P4/nmm). Neutron diffraction experiments reveal a complex multi-step order below TN = 3.8 K (Ln = Ho) and TN = 6.4 K (Ln = Tb). Magnetic phases can be described using four propagation vectors k1 = (1/2 0 0) and k2 = (1/2 0 1/4) at a base temperature of 1.7 K, which transform into incommensurate vectors k1′ = (1/2 – δ 0 0) and k3 = (1/2 – δ 0 1/2) at elevated temperatures in both compounds. Together with the refined models of magnetic structures, we present the group theoretical analysis of magnetic symmetry of the proposed solutions. These results prompt further investigations of the relation between the electronic structure of those semimetals and the determined antiferromagnetic ordering existing therein.

Read more
30 June 2022
Li-rich nanoparticles

High performance doped Li-rich Li1+xMn2-xO4 cathodes nanoparticles synthesized by facile, fast and efficient microwave-assisted hydrothermal route

Li-rich nanoparticles of Li1+xMn2-xO4 doped with Al, Co or Ni are successfully synthesized using a facile, fast and efficient microwave-assisted hydrothermal route. In this study, we demonstrate that nanocrystallinity and cationic doping play an important role in improving the electrochemical performance with respect to LiMn2O4 microparticles. They significantly reduce the charge-transfer resistance, lower the 1st cycle irreversible capacity to 6%, and achieve a capacity retention between 85 and 90% after 380 cycles, with excellent columbic efficiency close to 99%.

 

Read more
27 June 2022
Javier Pérez-Ramírez, Andras Bödi and Patrck Hemberger at the SLS

Reaction insights help make sustainable liquid fuels

Methanol made from CO2 in the air can be transformed into carbon neutral fuels. New mechanistic understanding aids development of this sustainable alternative.

Read more
17 June 2022
Figure 3

Synthesis of Metallic Lanthanide Thin Samples

This work aimed to produce intermetallic samples of platinoid metals (active metal matrix) and lanthanides (co-metal) and via the method of Coupled Reduction, i.e. a thermal treatment of the combination of the lanthanide oxide and noble metal at high temperature, as high as 1100 °C, under a constant flow of H2. We have demonstrated by means of several techniques, such as Scanning Electron Microscope, Energy Dispersive X-Ray Spectroscopy, Alpha Spectrometry and Radiographic Imaging, that this method, at defined experimental conditions (temperature, pressure and concentration) yields a metallic lanthanide thin film when using platinum as active metal matrix. Conversely, the formation of a bulk intermetallic compound was obtained when using Pd as matrix. Those systems will have applications in different nuclear physic and radiochemistry studies, such as irradiation targets for production of superheavy elements and for nuclear data determination.

Read more
2 June 2022
Chiara

NMB/Eckelman Young Investigator Award 2022

Chiara Favaretto, PhD student in the “Radionuclide Development” group at the Center for Radiopharmaceutical Sciences, received the NMB/Eckelman Young Investigator Award for the abstract entitled: “Production and radiochemical separation of terbium-155 from enriched gadolinium target material and its preliminary application in SPECT imaging”, presented at the International Symposium on Radiopharmaceutical Sciences (iSRS 2022).

Read more
27 May 2022
Proposed mechanism for structure and gas evolution and cathode-electrolyte interfacial reactions

Stable Performance of High Capacity Cobalt-Free Li-ion Battery

Lithium-rich layered oxides, containing cobalt, despite being promising high-capacity cathode materials, need alternatives to eliminate toxic and geopolitically restricted cobalt. An ongoing search for low-cost, Co-free Li-rich cathode materials with a better structural stability lead to investigation of Li1.16Ni0.19Fe0.18Mn0.46O2 (LNFM), where cobalt is replaced by abundant iron. Our LNFM not only delivered a high capacity of 229 mAh/g but also has a stable average discharge voltage when cycled to upper cutoff potential of 4.8 V in additive-free electrolyte.

Read more
  • First page « First
  • Previous page ‹‹
  • …
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • …
  • Next page ››
  • Last page Last »

Sidebar

PSI Scientific Reports

Archive 2006-2012. The Scientific Reports – containing accounts of research topics from all the different areas – provide an impression of the variety of subjects researched at PSI.

top

Footer

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Switzerland

Telephone: +41 56 310 21 11
Telefax: +41 56 310 21 99

How to find us
Contact

Visitor Centre psi forum
School Lab iLab (in German)
Center for Proton Therapy
PSI Education Centre
PSI Guest House
PSI Gastronomie (in German)
psi forum shop

Service & Support

  • Phone Book
  • User Office
  • Accelerator Status
  • PSI Publications
  • Suppliers
  • E-Billing
  • Computing
  • Safety (in German)

Career

  • Working at PSI
  • Job Opportunities
  • Training and further education
  • Career Center
  • Vocational Training (in German)
  • PSI Education Center

For the media

  • PSI in brief
  • Facts and Figures
  • Media corner
  • Media Releases
  • Social Media

Follow us: Twitter (in English) LinkedIn Youtube Facebook Instagram Issuu RSS

Footer legal

  • Imprint
  • Terms and Conditions
  • Editors' login