Skip to main content
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Search
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Our ResearchOpen mainmenu item
    • Current topics from our research
    • Future Technologies
    • Energy and Climate
    • Health Innovation
    • Fundamentals of Nature
    • Large Research Facilities
    • Brochures
    • 5232 — The magazine of the Paul Scherrer Institute
    • Research Divisions & Labs (only english)
  • IndustryOpen mainmenu item
    • Overview
    • Technology Transfer
    • Expertise
    • Spin-off Companies
    • Park Innovaare
  • Proton TherapyOpen mainmenu item
    • Overview
    • Physician & Patient Information
  • CareerOpen mainmenu item
    • Overview
    • Job Opportunities
    • Working at PSI
    • Personnel Policy
    • Equal Opportunities, Diversity & Inclusion
    • Training and Further Education
    • Vocational Training
    • PSI Education Centre
    • Career Center
    • Support Program "PSI Career Return Program"
    • PSI-FELLOW/COFUND
  • Visit to PSIOpen mainmenu item
    • Overview
    • Visitor Centre psi forum
    • Schülerlabor iLab
    • Public Events
    • How to find us
  • About PSIOpen mainmenu item
    • PSI in brief
    • Strategy
    • Guiding principles
    • Facts and figures
    • Organisational structure
    • For the media
    • Suppliers and customers
    • Customers E-Billing
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

You are here:

  1. PSI Home
  2. Our Research
  3. Media corner
  4. Media Releases

Secondary navigation

Our Research

  • Current topics from our research
    • Future Technologies
    • Energy and Climate
    • Health Innovation
    • Fundamentals of Nature
    • ESI Platform
    • Large research facilities
    • Project SLS 2.0
    • Topic Overview
    • Archive
  • 5232 – The magazine of the Paul Scherrer Institute
    • Contact
  • Brochures
  • Films
    • Virtual Tour
  • Social Media
    • PSI Community Guidelines
  • Media corner Expanded submenu item
    • Media Releases

Media Releases

Toggle filters
Datum
8 September 2015

The key to charging a lithium-ion battery rapidly

Media Releases Energy and Climate Research Using Synchrotron Light

Lithium iron phosphate batteries are very durable and can be charged relatively quickly. Researchers from the Paul Scherrer Institute (PSI), ETH Zurich and Japanese car manufacturer Toyota reveal the reasons for these properties in a new study. The findings were made possible thanks to measurements using a new method at the Swiss Light Source (SLS) at PSI.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
10 August 2015

New details of the transmission of stimuli in living organisms unveiled

Media Releases Biology Health Innovation Medical Science

Researchers unveil new details of how cells in a living organism process stimuli. So-called G-proteins, which help conduct external stimuli that reach a cell into its interior, play a central role here. For the first time, the study shows which parts of the G-proteins are vital for their function. Researchers from the Paul Scherrer Institute PSI, ETH Zurich, the pharmaceutical company Roche and the British MRC Laboratory of Molecular Biology report their results in the journals Nature and Nature Structural and Molecular Biology.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
6 August 2015
teaser picture

Magnets made of non-magnetic metals

Media Releases Future Technologies Materials Research Research with muons

For the first time, an international research team has demonstrated how to generate magnetism in metals that aren’t naturally magnetic, such as copper. The discovery could help develop novel magnets for a wide range of technical applications. Crucial measurements to understand this phenomenon were carried out at PSI à the only place where magnetic processes inside materials can be studied in sufficient detail.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
29 June 2015
teaser picture

Particulate matter from modern gasoline engines damages our lungs

Media Releases Environment Energy and Climate

For years, studies have proved that fine dust from petrol engines can damage our health. Modern engine technology does not help, either, as researchers from the University of Bern and the Paul Scherrer Institute (PSI) reveal.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
20 March 2015

Nanometres in 3D

Media Releases Future Technologies Research Using Synchrotron Light Micro- and Nanotechnology

Scientists at the Paul Scherrer Institute and ETH Zurich have created 3D images of tiny objects showing details down to 25 nanometres. In addition to the shape, the scientists determined how particular chemical elements were distributed in their sample and whether these elements were in a chemical compound or in their pure state.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
6 March 2015
teaser.jpg

Gasoline beats mining

Media Releases Environment

Until it was banned, leaded gasoline dominated the manmade lead emissions in South AmericaLeaded gasoline was a larger emission source of the toxic heavy metal lead than mining in South America à even though the extraction of metals from the region’s mines historically released huge quantities of lead into the environment. Researchers from the Paul Scherrer Institute PSI and the University of Bern have discovered evidence of the dominance of leaded gasoline based on measurements in an ice core from a Bolivian glacier. The scientists found that lead from road traffic in the neighbouring countries polluted the air twice as heavily as regional mining from the 1960s onwards. The study is to be published in the journal Science Advances on 6 March 2015.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
19 January 2015
teaserbild.jpg

New laser for computer chips

Media Releases Future Technologies Materials Research Micro- and Nanotechnology

Germanium-Zinn-Halbleiterlaser lässt sich direkt auf Siliziumchips aufbringenWinzige Laser, die in Computerchips aus Silizium eingebaut werden, sollen in Zukunft die Kommunikation innerhalb der Chips und zwischen verschiedenen Bauteilen eines Computers beschleunigen. Lange suchten Experten nach einem dafür geeigneten Lasermaterial, das sich mit dem Fertigungsprozess von Siliziumchips vereinbaren lässt. Wissenschaftler des Forschungszentrums Jülich und des Paul Scherrer Instituts PSI haben hier nun einen wichtigen Fortschritt erzielt.This news release is only available in German.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
12 January 2015

Batman lights the way to compact data storage

Media Releases Future Technologies Research Using Synchrotron Light Materials Research

Researchers at the Paul Scherrer Institute (PSI) have succeeded in switching tiny, magnetic structures using laser light and tracking the change over time. In the process, a nanometre-sized area bizarrely reminiscent of the Batman logo appeared. The research results could render data storage on hard drives faster, more compact and more efficient.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
15 December 2014

Shortcut to protein portraits

Media Releases Research Using Synchrotron Light Biology

All living organisms, from bacteria to humans, rely on proteins to perform their vital functions. How these proteins accomplish their tasks depends on their structure. Researchers from the Paul Scherrer Institute have now devised a novel method to determine the crystal structure of proteins using X-ray light, which could also hasten the development of new drugs in future. The study will be published in the journal Nature Methods on 15 December.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
31 October 2014
MorgenSonneOst-teaser.jpg

When thawing glaciers release pollutants

Environment Energy and Climate Media Releases

As glaciers increasingly melt in the wake of climate change, it is not only the landscape that is affected. Thawing glaciers also release many industrial pollutants stored in the ice into the environment. Now, within the scope of a Swiss National Science Foundation project, researchers from the Paul Scherrer Institute (PSI), Empa, ETH Zurich and the University of Berne have measured the concentrations of a class of these pollutants à polychlorinated biphenyls (PCB) à in the ice of an Alpine glacier accurately for the first time.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
19 October 2014
teaserbild.jpg

Puzzling new behaviour observed in high-temperature superconductors

Media Releases Future Technologies Materials Research Research Using Synchrotron Light

New effect might be important for emergence of High-Temperature SuperconductivityAn international team of researchers has observed a new, unexpected kind of behaviour in copper-based high-temperature superconductors. Explaining the new phenomenon à an unexpected form of collective movement of the electrical charges in the material à poses a major challenge for the researchers. A success in explaining the phenomenon might be an important step toward understanding high-temperature superconductivity in general. The crucial experiments were conducted at the Paul Scherrer Institute.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
12 October 2014

Useful for spintronics: Big surprises in a thin surface region

Media Releases Research Using Synchrotron Light Materials Research Future Technologies

The need for ever faster and more efficient electronic devices is growing rapidly, and thus the demand for new materials with new properties. Oxides, especially ones based on strontium titanate (SrTiO3), play an important role here. A collaborative project headed by scientists from the PSI has now revealed properties of strontium titanate that make it an important base material for applications in spintronics.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
17 September 2014
teaserbild.jpg

Airpocalypse explained

Media Releases Environment Energy and Climate

The causes of China's record level fine particulate pollution in winter 2013At the beginning of 2013 a greyish-brown blanket of smog lay over large areas of China for several months. The fine particle pollution was higher by 1 to 2 orders of magnitude than the levels normally measured in Western Europe and the United States. An international team of researchers under the lead of the Paul Scherrer Institute PSI and the Institute of Earth Environment, Chinese Academy of the Sciences revealed the causes of the airpocalypse. The study published in the journal Nature also describes what steps are to be taken to prevent an environmental crisis of this kind in the future.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
9 September 2014
teaserbild.jpg

Energiewende in Reinkultur – in Wädenswil zu bestaunen

Media Releases Energy and Climate

Der am Paul Scherrer Institut PSI entwickelte Prozess der hydrothermalen Methanierung von wässriger Biomasse erreicht einen wichtigen Meilenstein: Dank der Zusammenarbeit im neuen Kompetenzzentrum des Bundes für Bioenergie BIOSWEET konnten Forschende des PSI, der ZHAW, der ETH Lausanne, der Empa und der Hochschule für Technik Rapperswil die technische Machbarkeit der Methanherstellung aus Mikroalgen demonstrieren. Der dazu verwendete Algenbioreaktor sowie die Anlage zur Methanierung der Algen können am 24. September auf dem Campus Grüental der ZHAW in Wädenswil besichtigt werden. Für Medienschaffende gibt es von 14:00 bis 14:30 eine spezielle Führung.This news release is only available in German.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
4 September 2014
teaserbild.jpg

New material generated with light

Media Releases Research Using Synchrotron Light Large Research Facilities Materials Research Future Technologies SwissFEL

PSI researchers garner experience for SwissFEL experimentsAided by short laser flashes, researchers at the Paul Scherrer Institute have managed to temporarily change a material’s properties to such a degree that they have à to a certain extent àcreated a new material. This was done using the x-ray laser LCLS in California. Once the PSI x-ray laser SwissFEL is up and running, experiments of this kind will also be possible at PSI.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
21 August 2014
teaserbild.jpg

Jurassic Welsh mammals were picky eaters, study finds

Media Releases Research Using Synchrotron Light

New analyses of tiny fossil mammals from South Wales are shedding light on the function and diets of our earliest ancestors, a team led by researchers from the Universities of Bristol and Leicester report in the journal Nature. The team used CT scanning with synchrotron X-rays at PSI’s Swiss Light Source to reveal in unprecedented detail the internal anatomy of the mammals’ tiny jaws.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
30 July 2014
teaserbild.jpg

Insulator makes electrons move in an ordered way

Media Releases Research Using Synchrotron Light Materials Research Future Technologies

Researchers at the PSI, the EPFL and the Chinese Academy of Science, have proven that the material SmB6 shows all the properties of a so called topological insulator à a material with electric currents flowing along its surface with all of them being polarized. Here, the property is very robust, i.e. the only current that can flow is spin polarized and is not easily destroyed by small irregularities in the structure or composition of the material. Spin polarized currents are necessary for spintronics, electronics using the electrons’ spin.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
16 June 2014
teaserbild.jpg

Ice in fuel cells imaged directly for the first time

Media Releases Energy and Climate Research Using Neutrons

Researchers from the Paul Scherrer Institute (PSI) have succeeded in imaging the distribution of frozen and liquid water in a hydrogen fuel cell directly for the first time. They applied a new imaging technique that uses successively two beams with different neutron energies to distinguish between areas with liquid water and those with ice extremely reliably. The method therefore opens up the prospect of studying one of the main problems of using fuel cells to power vehicles: ice can clog the pores in the fuel cells and affect their performance. The PSI scientists’ results will be published in the journal Physical Review Letters on 16 June 2014.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
11 June 2014

Sixteen nanometres in 3D

Media Releases Research Using Synchrotron Light

Researchers from the Paul Scherrer Institut (PSI) have devised a method that opens up new scales of tomographic imaging and will thus allow in the future highly resolved measurements of biological and materials science specimens. With the aid of a special prototype instrument at the Swiss Light Source (SLS), they achieved a 3D resolution of sixteen nanometres in a large sample and thus set a new world record in X-ray tomography.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
26 May 2014

New insight into photosynthesis

Media Releases Biology Research Using Neutrons Large Research Facilities

The way that algae and plants respond to light has been reinterpreted based on results from recent experiments. Under particular lighting conditions during photosynthesis, the well-ordered stacking and alignment of light-sensitive membranes in the algae are disrupted. There is no significant movement of the membrane embedded light harvesting proteins, which rather become largely inactive. These new findings challenge widely accepted views of how algae respond to light where the light harvesting proteins were thought to move around the membranes.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
  • First page « First
  • Previous page ‹‹
  • …
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • …
  • Next page ››
  • Last page Last »

Sidebar

Contact for media representatives

Martina Gröschl
Department Communication
Paul Scherrer Institut
5232 Villigen PSI
Switzerland

Telephone: +41 56 310 52 13
E-mail: martina.groeschl@psi.ch

Fascinating research

Learn more about PSI's research cosmos

Further information

  • Facts and figures current figures for PSI
  • About PSI general information, history, interesting facts
  • Corporate films and videos
  • General events for the general public

01/2023

5232 — The magazine of the Paul Scherrer Institute

01/2023
View in issuu.com
Download
Subscribe to our magazine
top

Footer

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Switzerland

Telephone: +41 56 310 21 11
Telefax: +41 56 310 21 99

How to find us
Contact

Visitor Centre psi forum
School Lab iLab (in German)
Center for Proton Therapy
PSI Education Centre
PSI Guest House
PSI Gastronomie (in German)
psi forum shop

Service & Support

  • Phone Book
  • User Office
  • Accelerator Status
  • PSI Publications
  • Suppliers
  • E-Billing
  • Computing
  • Safety (in German)

Career

  • Working at PSI
  • Job Opportunities
  • Training and further education
  • Career Center
  • Vocational Training (in German)
  • PSI Education Center

For the media

  • PSI in brief
  • Facts and Figures
  • Media corner
  • Media Releases
  • Social Media

Follow us: Twitter (in English) LinkedIn Youtube Facebook Instagram Issuu RSS

Footer legal

  • Imprint
  • Terms and Conditions
  • Editors' login